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Abstract

The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a

critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of

individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations

in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive

stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high

levels of voluntary wheel running (HR). Mice (n = 48 total), half from HR lines and half from non-selected control

(C) lines, were divided into two experimental groups, one with 13–14 weeks of access to a running wheel and one

housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomogra-

phy (lCT)-based morphometric traits were measured, and reduced elastic modulus (Er) was estimated separately

for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-

model analysis of covariance (ANCOVA) showed that body mass was a highly significant predictor of all morphomet-

ric traits and that structural change is more apparent at the lCT level than in conventional morphometrics of

whole bones. Both linetype (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian reces-

sive allele and characterized by a �50% reduction in mass of the gastrocnemius muscle complex) were significant

predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoinden-

tation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences.

Although we found no significant effects of linetype (HR vs. C) or physical activity (wheel vs. no wheel) on mean

stiffness, anterior and posterior quadrants were significantly stiffer (P < 0.0001) than medial and lateral quadrants

(32.67 and 33.09 GPa vs. 29.78 and 30.46 GPa, respectively). Our findings of no significant difference in compres-

sive stiffness in the anterior and posterior quadrants agree with previous results for mice, but differ from those for

large mammals. Integrating these results with others from ongoing research on these mice, we hypothesize that

the skeletons of female HR mice may be less sensitive to the effects of chronic exercise, due to decreased circulat-

ing leptin levels and potentially altered endocannabinoid signaling.
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Introduction

Bone as a composite

The overall behavior of bone under mechanical loading is a

function of structure and material constituents on both

macro and micro scales. Moreover, the composite nature of

bone (Lakes, 1993; Currey, 2003; Ji & Gao, 2004; Tai et al.

2007), coupled with the potential for alterations of its struc-

ture and material properties under the influence of specific

sets of alleles (Kodama et al. 2000; Robling et al. 2003,

2007; Akhter et al. 2004; Lang et al. 2005; Ralston et al.
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2005; Bower et al. 2006; Kesavan et al. 2006, 2007; Beamer

et al. 2007; Jiao et al. 2007) and exercise (Kodama et al.

2000; Kesavan et al. 2005, 2006, 2007; Kelly et al. 2006; Ro-

bling et al. 2007), suggests that bone has the potential to

respond across multiple generations (i.e. evolutionary

change) or within an individual’s lifetime (i.e. phenotypic

plasticity) on multiple spatial scales, from micro-scale mate-

rial constituents to macro-scale morphology.

Mouse model of voluntary exercise

Studies of bone biomechanics in mice traditionally have

compared inbred strains of mice (Robling & Turner, 2002;

Koller et al. 2003; Robling et al. 2003), mice with specific

gene knockouts (Hamrick et al. 2000, 2006) or transgenic

animals (Akhter et al. 2004; MacDonald et al. 2007). Here,

we employ a novel experimental mouse model to study

skeletal biomechanics on two spatial scales. We use a large-

scale and long-term (> 15 year) artificial selection experi-

ment for high voluntary wheel running in which changes in

bone macrostructure, material properties and, ultimately,

response to loading could be a result of changes in genetic

architecture (i.e. a correlated response to selection), varia-

tion in the environment (i.e. effects of training) or a combi-

nation (Swallow et al. 1998, 2009; Garland, 2003; Middleton

et al. 2008a). In addition, the magnitude of the response to

exercise training may itself be genetically controlled

(Garland & Kelly, 2006; Middleton et al. 2008a).

Our previous work using this model system has demon-

strated significant morphological changes in skeletal traits

resulting from both selective breeding and access to a run-

ning wheel, and from the interaction of these factors. Mice

from the four replicate High Runner (HR) lines (those bred

for high voluntary wheel running) exhibit significantly

wider distal femoral condyles (Kelly et al. 2006; Middleton

et al. 2008b), significantly larger femoral heads (Kelly et al.

2006; Middleton et al. 2008b), and significantly less direc-

tional asymmetry of hind limb bone lengths (Garland &

Freeman, 2005) when compared with four non-selected

control (C) lines. By housing HR and C mice with and without

access to running wheels, the effects of genetics and physical

exercise can be studied simultaneously. In response to

8 weeks of wheel access, Kelly et al. (2006) found significant

increases in anteroposterior and mediolaterial minimum tib-

ial and femoral diameters, as well as anteroposterior diame-

ter of the femoral head (see also further analyses in

Middleton et al. 2008a).

Phenotypic adaptation in response to loading

Because the response of bone to in vivo loading is a function

not only of the geometric distribution of bony material but

also the mechanical properties of that material, gross mor-

phological changes in a the structure of a bone may be

accompanied by alterations in the underlying material of

which the bone is composed. Commonly, three- and four-

point bending have been used to assess bone mechanical

properties (e.g. Broz et al. 1993; Robling & Turner, 2002;

Babij et al. 2003; Koller et al. 2003; Akhter et al. 2004). How-

ever, these methods often suffer from the assumption of

isotropy (Silva et al. 2004). Recently, nanoindentation has

emerged as a powerful technique for assessing the microme-

chanical properties of bone. Early studies (Rho et al. 1997,

1999a,b; Roy et al. 1999; Turner et al. 1999; Zysset et al.

1999) were designed to refine the methodology and probe

the mechanical properties of cortical and trabecular bone,

but more recent studies have used nanoindentation to com-

pare bone material properties on a finer scale, for example,

in different strains of mice (Akhter et al. 2004; Silva et al.

2004). In senescence-accelerated mice, Young’s moduli esti-

mated from four-point bending were found to be five times

lower than those computed from nanoindentation, perhaps

because of the porosity of whole bone (Rho et al. 2002; Silva

et al. 2004). More widespread acceptance of nanoindenta-

tion as one method for assessing comparative micro-scale

mechanical properties of bone is evidenced by recent studies

with direct relevance to human biological systems (Fan et al.

2007; Kavukcuoglu et al. 2007; Tai et al. 2007; Amanat et al.

2008; Leong & Morgan, 2008; Nazarian et al. 2008).

Here, we combine studies of gross and micro-computed

tomography (lCT)-derived morphometric traits with direct

estimates of bone stiffness from nanoindentation to com-

pare the morphology and mechanical behavior of femoral

cortical bone in HR and C mice reared in two different envi-

ronments, with or without access to a running wheel. We

hypothesized that gross morphological changes would be

accompanied by underlying alterations of tissue architec-

ture, which would be reflected by significantly different

elastic moduli. We also present a systematic methodology

for detecting outliers among a large sample of indents and

assess the repeatability of stiffness estimation by nanoin-

dentation in a single sub-region of a bone. Finally, methods

for detecting intra-specimen and intra-bone differences in

stiffness are discussed.

Materials and methods

Model system

Mice used in this study were part of a long-term artificial selec-

tion experiment on voluntary wheel-running behavior (Garland,

2003; Rhodes et al. 2005; Swallow et al. 2009). The complete

experimental design and rationale is described elsewhere

(Swallow et al. 1998; Garland, 2003), and here we provide only

an overview.

The experiment consists of eight closed lines established from

an outbred base population of ICR strain mice (Harlan Sprague

Dawley, Indianapolis, IN). Genetic variation in the founder pop-

ulation was essential to allow gene frequencies to change across

generations (Eisen, 1987, 1992; Eisen et al. 1995; Bennett, 2003),

precluding the use of an inbred mouse strain. Four of the eight
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lines were designated as non-selected controls (C), and the

other four were designated as high runner (HR) lines in which

the parents of subsequent generations are those mice that

exhibit the highest levels of voluntary wheel running during

the 5th and 6th days of a 6-day exposure to wheels. Summed

revolutions on days 5 and 6 increased rapidly in HR lines rela-

tive to control lines, such that, after 16 generations, HR lines

ran 170–200% more revolutions than control lines (Garland,

2003; Swallow et al. 2009). In addition to changes in wheel-

running behavior, numerous correlated responses have been

observed in behavior (Carter et al. 2000; Gammie et al. 2003;

Malisch et al. 2009), physiology (Dumke et al. 2001; Rezende

et al. 2006a,b), and endocrinology (Girard & Garland, 2002;

Girard et al. 2007; Malisch et al. 2007, 2008), many of which

(e.g. home-cage activity levels, glucose uptake rate, leptin lev-

els) may have relevance to skeletal physiology (also see Discus-

sion below). Selection is unidirectional (only for high levels of

voluntary wheel running), and comparisons are made only

between HR mice and their non-selected controls. Several

potential difficulties argue against implementing selection for

reduced wheel running, including unintentional selection on

non-performance traits (e.g. fearfulness of running wheels) or

for increases in alleles deleterious to overall health (see

Garland, 2003 for additional discussion).

A subset of HR mice exhibit a ‘mini-muscle’ (MM) phenotype,

which is characterized by an approximate 50% reduction in the

mass of the triceps surae muscle complex (Garland et al. 2002;

Houle-Leroy et al. 2003). A simple Mendelian recessive allele

(Garland et al. 2002; Hannon et al. 2008), the mini-muscle

(MM) allele, has been mapped to a 2.6-Mb region of mouse

chromosome 11 (MMU11; Hartmann et al. 2008). In addition to

changes in muscle mass and contractile physiology (Houle-Leroy

et al. 2003; Syme et al. 2005; Guderley et al. 2006, 2008), mice

exhibiting the MM phenotype have significantly longer and

thinner femora and tibiae (Kelly et al. 2006). However, the dry

mass of these bones is not lower than that of control mice.

Study population

Female mice (n = 24 from HR lines) from generation 37 of

selection and controls (n = 24 from control lines) were given

access to a running wheel (n = 12 HR; n = 12 control) or not

(n = 12 HR; n = 12 control), beginning at a mean age of

79 days (range = 74–81 days). Food and water were available

ad libitum. For wheel-access mice, the number of wheel revolu-

tions was recorded by computer in 1-min bins using an auto-

mated system (Swallow et al. 1998). After 13–14 weeks, mice

were sacrificed and stored at )20 �C until dissection. Mean age

at sacrifice was 174 days (range = 171–177 days). All procedures

were reviewed and approved by the IACUC of the University of

California, Riverside, an AAALAC-accredited institution.

Morphometric measurements and lCT scanning

After thawing, right and left femora were dissected free of the

surrounding tissue and manually defleshed. Morphometric

traits of the femur measured were: proximal width from the

femoral head to the lateral aspect, distal width at the femoral

condyles, mediolateral and anteroposterior diameters at the

femoral mid-diaphysis, proximodistal and anteroposterior diam-

eters of the femoral head and neck (also see Fig. 1 in Middle-

ton et al. 2008b). All measurements were made using digital

calipers (Mitutoyo Corporation) to the nearest 0.01 mm. Fem-

ora were then frozen separately in 0.9% saline at )20 �C.

Cross-sectional anatomy of the femoral mid-diaphysis was

imaged using a high-resolution fan-beam lCT scanner (lCT 40;

Scanco Medical AG, Bassersdorf, Switzerland). Cross-sectional

areas, maximum and minimum second moments of area (Imax

and Imin, respectively), maximum section moduli (Imax ⁄ Cmin,

where Cmin is the maximum extent of the material perpendicu-

lar to Imin), and minimum section moduli (Imin ⁄ Cmax, where Cmax

is the maximum extent of the material perpendicular to Imax)

were calculated using the built-in software of the lCT scanner

from eight consecutive slices of the femoral mid-diaphysis

(voxel size = 9 lm3).
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Fig. 1 Plots of (A) Imax vs. Body mass and (B) Anteroposterior (AP)

femoral diameter vs. Body mass coded by control (C) ⁄ High Runner

(HR) and wheel-access (W) or no wheel-access (S, sedentary). Results

of two-way ANCOVA (Table 1) reveal significant differences between

control and HR mice in Imax (A; P = 0.0207) but not in AP diameter

(B; P = 0.3809; see Table 1).
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Nanoindentation

Sample preparation

Femora were embedded in low viscosity epoxy (EPO-THIN;

Buehler Ltd., Lake Bluff, IL) at room temperature. A �0.5-mm

section was cut from the femoral mid-diaphysis using a dia-

mond saw (IsoMet Plus Precision Saw; Buehler Ltd.). Sections

were mounted on microscope slides with paraffin, and pol-

ished by hand (Metaserv 2000 Grinder Polisher; Buehler Ltd.)

using silicon carbide paper of progressively finer grit (400,

600, 800, 1200). Following hand polishing, cross-sections were

removed from the paraffin mount and affixed to 15-mm

stainless steel discs (Ted Pella, Inc., Redding, CA) with cyano-

acrylate adhesive.

Discs were glued to the polishing mount of an automated

polisher (Automet 2000, Buehler Ltd.) and polished on cloths

using 5, 1 and 0.3 lm alumina suspensions (Texmet 1500 cloths,

Masterprep Polishing Suspension; Buehler Ltd.). Final polishing

was performed using a 0.5-lm alumina suspension and a sepa-

rate cloth. Between polishing solutions, samples were rinsed

thoroughly and dried with a stream of air. After polishing, sam-

ples were ultrasonically cleaned for 5 min in deionized water to

remove surface debris. Adequate degree of polishing was veri-

fied using interferometry (NewView 5000; Zygo Corporation,

Middlefield, CT).

Sample testing

Reduced elastic modulus (Er) was measured using the method of

Oliver & Pharr (1992) in each of four anatomical quadrants

(anterior, posterior, medial, and lateral) by nanoindentation (TI

900 TriboIndenter; Hysitron Inc., Minneapolis, MN). Er of a speci-

men is related to the elastic modulus of a specimen by the fol-

lowing equation:

1

Er
¼

1� m2
� �

E
þ

1� m2
i

� �

Ei

where m is Poisson’s ratio for the indented specimen, mi is Pois-

son’s ratio of the indenter material (here mi = 0.07), and Ei is the

elastic modulus of the indenter material (here Ei = 1440 GPa)

(Oliver & Pharr, 1992). Experimentally, Er is calculated from the

slope of a line tangent to the load vs. displacement curve at

peak indentation load. Specimens were examined visually under

light microscopy to select suitable locations for indentation.

Indents were made at the mid-point of the cortical bone, away

from obvious osteocyte lacunae. Nine indents were made using

a diamond Berkovich tip (�200 nm tip radius) in a 3 · 3 grid

with 5-lm spacing between indents. Indents were made using a

triangular load pattern to a maximum load of 1500 lN with a

loading rate of 100 lm min–1, which produced vertical displace-

ments of 200–250 nm.

Because we were primarily interested in inter-individual and

intra-bone variation rather than absolute magnitude of mea-

sured stiffness, we did not prevent samples from dehydrating

during testing, although a ‘hydrated nanoindentation’ tech-

nique has been described previously (Rho & Pharr, 1999; Zysset

et al. 1999; Hengsberger et al. 2002). All samples received simi-

lar treatment, hence we conclude that variation in reduced

moduli arose from biological differences and not from specimen

handling. Because our tests were made on dehydrated samples,

we expect that the true elastic modulus of fully hydrated bone

would be 10–24% lower than the values recorded here (Evans &

Lebow, 1951; Ryan & Williams, 1989).

Statistical analysis

Morphometric and nanoindentation data were analyzed using

two-way, mixed model ANOVAs and ANCOVAs in SAS PROCEDURE MIXED

(Ver. 9.3; SAS Institute, Cary, NC) with Type III tests of fixed

effects. Main effects tested for differences between HR and C

mice (linetype effect), differences between wheel-access and no

wheel-access mice (activity effect), their interaction (line-

type · activity effects), and presence of the mini-muscle pheno-

type. For mice with wheel access, quantitative wheel running

(mean revolutions per day) during the last 7 days prior to sacri-

fice was included as a covariate. Body mass was included as a

covariate in all ANCOVA analyses because HR mice are smaller than

C mice (Swallow et al. 1999) and because body mass is a strong

predictor of overall size of skeletal elements (Kelly et al. 2006;

Middleton et al. 2008a,b).

Because we performed many statistical tests on closely related

data, our Type I error rate for the entire experiment may exceed

the nominal 5% alpha level (Curran-Everett, 2000; Curran-Everett

& Benos, 2004). To address this concern, we performed a positive

false discovery rate (pFDR) analysis using the QVALUE package (Ver-

sion 1.1; Storey, 2002) for R (Version 2.8.0; R Core Development

Team, 2008), allowing for 5% false significant results

(pFDR = 0.05). Based on the results of this analysis, a more appro-

priate and conservative alpha level for significance is a = 0.029.

Results

Morphometrics

Body mass was a highly significant covariate in all analyses.

After statistically accounting for body mass, significant dif-

ferences in femoral cross-sectional geometry were observed

(Table 1; Fig. 1A), both when comparing HR to C mice and

when comparing those exhibiting the mini-muscle pheno-

type to those without. HR mice have significantly larger

maximum second moments of area and minimum section

moduli after controlling for body mass. After controlling

for multiple comparisons, maximum section modulus is only

suggestive of being increased in HR mice. In contrast, mice

exhibiting the mini-muscle phenotype exhibit significantly

smaller maximum second moments of area and maximum

and minimum section moduli after controlling for body

mass, selection, and activity status.

Nanoindentation

Identification of outliers

We calculated reduced modulus for 1694 total indents in the

sample of 48 mice (only eight indents were available for

some quadrants). Prior to statistical analysis, reduced modu-

lus was log10 transformed to improve normality of residuals

from the statistical models. A nested one-way ANOVA (quad-

rant nested within mouse) was used to objectively detect sta-

tistical outliers. Standardized residuals were calculated for

the ANOVA model, and indents with standardized residuals

greater than 3.5 or less than )3.5 were excluded from further

analysis, which left 1672 measurements of reduced modulus.
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Repeatability and sequence effects

Repeatability of Er estimated by nanoindentation was calcu-

lated for each anatomical region separately. Repeatability

in this sense is calculated from a one-way ANOVA as (variance

among mice) ⁄ (variance among mice + variance within

mouse) (Lessels & Boag, 1987). If within-group variance is

small, then this ratio is closer to 1, indicating a high repeat-

ability. Repeatability values ranged from 0.66 for the lateral

quadrant to 0.73 for the medial quadrant, indicating that

the among-group variance (i.e. mouse-to-mouse differ-

ences) is 66–73% of the total variance.

A mixed-model ANOVA of all indents, using measurement

sequence as a random effect nested within quadrants,

revealed no significant effect of sequence (indent #1 to

indent #9; P = 0.2157) but did show significant differences

among mice (P < 0.001), among quadrants within mice

(P < 0.0001), and in the interaction of mouse by quadrant

(P < 0.001). Because we found both acceptably high repeat-

ability and no sequence effect, we calculated a mean

reduced modulus for each quadrant for each mouse and

used that value for all remaining analyses.

Reduced modulus measured by nanoindentation

Among mice with wheel access, quantitative wheel running

(mean revolutions per day) during the last 7 days prior to

sacrifice was not a significant predictor of bone stiffness in

either C (P = 0.2095) or HR lines (P = 0.7633), nor were repli-

cate lines significantly different from one another (one-way

ANCOVA; control: P = 0.7300; HR: P = 1.0).

When reduced modulus is predicted separately for each

of the four quadrants (with mini-muscle phenotype as an

additional main effect and body mass as covariate), no sig-

nificant effects in either the anterior or medial quadrants

were found (Table 2). In the lateral quadrant, Er was signifi-

cantly negatively correlated with body mass (P = 0.029),

and in the posterior quadrant, presence of the MM pheno-

type was a nearly significant positive predictor of Er

(P = 0.052; Table 2).

An ANCOVA (body mass as covariate) in which mean Er

was modeled by quadrant, linetype, activity, their interac-

tion and the mini-muscle phenotype, revealed a signifi-

cant quadrant effect (P = 0.0002; Table 2, line 1), but no

significant effects of linetype, activity, their interaction,

Table 1 Results of two-way, mixed-model

ANCOVA testing for main effects of Linetype

(HR vs. C), Activity (wheel access vs. no wheel

access), their interaction, and Mini-muscle

phenotype (present vs. absent), with body

mass (log10 transformed) as a covariate.

Trait Linetype Activity

Linetype ·
Activity Mini-muscle

Body

mass

ML femoral diameter 0.1109+ 0.5494) 0.6561 0.1119) 0.0001

AP femoral diameter 0.3809+ 0.3928+ 0.6890 0.1470+ <0.0001

Width of the distal

femoral condyles

0.1747+ 0.5226+ 0.8821 0.9814+ <0.0001

Proximal femoral width 0.1414+ 0.2502) 0.1097 0.5002) 0.0047

Height of the femoral head 0.1192+ 0.7981+ 0.8828 0.3141) 0.0006

AP depth of the femoral head 0.1903+ 0.9323) 0.2638 0.2521) <0.0001

Cross sectional area 0.6006+ 0.5661) 0.1953 0.1097) <0.0001

Imax 0.0207+ 0.5917) 0.7456 0.0056) <0.0001

Imin 0.0928+ 0.7087) 0.7880 0.3820) <0.0001

Maximum section modulus 0.0361+ 0.5338) 0.5492 0.0149) <0.0001

Minimum section modulus 0.0122+ 0.6025) 0.6474 0.0019) <0.0001

Two-tailed P-values (not corrected for multiple comparisons) are shown, along with

direction of the response (+ or )) for each comparison listed above. For example, Imax is

significantly larger in HR mice than in C mice (P = 0.0207).

Table 2 Results of two-way, mixed model

ANCOVA for the main effects of Linetype (HR

vs. C), Activity (wheel access vs. no wheel

access), their interaction, and Mini-muscle

phenotype (present vs. absent) on mean

reduced modulus (log10 transformed) for each

bone quadrant analyzed separately, with body

mass (log10 transformed) as a covariate.

Quadrant Linetype Activity

Linetype ·
Activity Mini-muscle

Body

mass Quadrant

0.9551+ 0.5269) 0.3552 0.2112+ 0.4448) 0.0002

Anterior 0.1829+ 0.7728) 0.7100 0.4578) 0.4832+

Posterior 0.2065) 0.5019) 0.4108 0.0524+ 0.5092)
Lateral 0.3595) 0.3372) 0.3239 0.2708+ 0.0292)
Medial 0.2790+ 0.4077+ 0.7791 0.9452+ 0.1427+

Two-tailed P-values (not corrected for multiple comparisons) are shown, along with

direction of the response (+ or )) for each comparison listed above. The first row shows

the results of a model fit with quadrant as an additional main effect (one level for each

quadrant). In this model, quadrant was a significant overall predictor or bone stiffness

(see text for details).
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mini-muscle phenotype or body mass were found. Post-

hoc analysis showed that the anterior and posterior

quadrants, considered as a group, are significantly stiffer

than the medial and lateral quadrants (P < 0.0001;

Fig. 2). Moduli in the anterior and posterior quadrants

do not differ significantly from one another (P = 0.6431),

nor do those of the medial and lateral quadrants

(P = 0.4125). Backtransformed least-squares means and

95% confidence intervals for the reduced moduli of each

quadrant are shown in Table 3.

Discussion

Morphometrics

Our previous work using this model system, including stud-

ies of bones from animals sampled at different points dur-

ing the many generations of selection and from animals

with varying periods of wheel-access, has revealed signifi-

cant morphometric differences between high runner and

control lines of mice, mice housed with vs. without wheel

access, and between normal and mini-muscle individuals

(Garland & Freeman, 2005; Kelly et al. 2006; Middleton

et al. 2008b). These gross morphological differences

between (i) HR and C mice and (ii) active and non-wheel-

active mice led us to hypothesize that such variation might

also be reflected in material properties of the bone itself,

despite the differences in generation of selection and

length of wheel-access.

In this specific sample of mice – females from generation

37 of selection that were or were not given access to a

running wheel for 13–14 weeks – we found differences in

morphometric traits consistent with those found in other

samples (Garland & Freeman, 2005; Kelly et al. 2006; Middle-

ton et al. 2008b). lCT measurements of the cross-sectional

properties of the femur are generally more sensitive than

external bone dimensions, and, in this study, were able to

detect more subtle differences among groups (Table 1;

Fig. 1). Cross-sectional geometry may be more responsive to

changes in bone loading than bone material properties, and

thus more directly reflect the mechanical environment of

the limb (Table 1; also see Carlson & Judex, 2007).

As we continue to accumulate diverse data on skeletal

traits in mice from this ongoing selection experiment, we

have discerned patterns we had not originally hypothe-

sized. Whereas Kelly et al. (2006) analyzed only male mice

(with ⁄ without 8–9 weeks of wheel access), this study and

that described by Middleton et al. (2008b) included only

females. Mice from the present study and that by Kelly

et al. (2006) had wheel access for roughly comparable peri-

ods of time. In the sample of male mice analyzed by Kelly

et al., wheel access affected many aspects of bone geome-

try: 14 of 22 traits studied differed significantly between

sedentary and wheel-access animals (a = 0.05). Here, in a

sample of females, no such effects were found (Table 1). In

a sample of older female mice (20 months of wheel access;

Middleton et al. 2008b), activity similarly produced no

detectable effect on skeletal geometry. At the time, we

hypothesized that this pattern resulted from the advanced

age and presumed post-reproductive status of the mice.

However, the pattern observed here suggests a broader

pattern of attenuation in osteogenic response to exercise in

female mice, despite the fact that female mice, on average,

run more than males. A priority for future studies will be

simultaneous analyses of both sexes housed under identical

conditions.
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Fig. 2 Comparison of reduced modulus (Er) and 95% confidence

intervals for each of the four anatomical quadrants (backtransformed

from log10 transformed raw data; also see Table 3). Anterior and

posterior quadrants are significantly stiffer (P < 0.0001) than lateral

and medial quadrants, but in neither pair is one mean significantly

different from the other (anterior vs. posterior P = 0.6431; medial vs.

lateral P = 0.4125).

Table 3 Least-squares means and 95% confidence intervals of

reduced modulus (GPa; backtransformed from log10 transformed

values) from two-way, mixed-model ANCOVA for the main effects of

Linetype (HR vs. C), Activity (wheel access vs. no wheel access), Mini-

muscle phenotype (present vs. absent), and Quadrant, with body mass

as covariate (see Table 2, line 1).

Quadrant

Lower

95% CI

Least-squares

mean

Upper

95% CI

Anterior 31.20 32.67 34.20

Posterior 31.61 33.09 34.64

Lateral 28.46 29.78 31.16

Medial 29.12 30.46 31.88
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Nanoindentation

Repeatability of nanoindentation on bone and

identification of outliers

Reduced modulus of bone measured by nanoindentation is

locally consistent, with repeatability ranging from 0.66 to

0.73. So far as we know, these are the first reported values

for repeatability of nanoindentation results for bone. In

studies of homogeneous materials, nanoindentation pro-

duces highly repeatable measurements, and with increasing

heterogeneity, significantly more variability (Jang &

Matsubara, 2005). As a consequence, we suggest that a por-

tion of the variability we observe in our sample after the

removal of statistical outliers is due to bone anisotropy

(Radovic et al. 2004). Because of high repeatability and

independence of indents (lack of a significant indentation

sequence effect), we used a mean of the nine indents for

the majority of statistical tests. We used a preliminary ANCOVA

to objectively detect statistical outliers, defining those with

standardized residuals greater or less than 3.5 as outliers.

With this cutoff, we retained 1672 of 1694 indents (98.7%).

A more restrictive subset of indents could be used, but our

discovery of significant among-quadrant stiffness suggests

that our method is robust. Even after calculating a mean

stiffness per quadrant, nanoindentation appears sufficiently

sensitive to detect mouse-to-mouse and among-quadrant

(within mouse) variation in stiffness (Table 2; see next

section).

Applicability of microscale mechanical properties

studies

Nanoindentation is a robust and powerful technique for

assessing the micromechanical properties of bone (Rho

et al. 1997, 1999a). In addition to comparative studies such

as the one described here, nanoindentation can be used to

assess regional heterogeneity in Er. As we have shown

(Table 3; Fig. 2), material properties may vary within the

cortex of a given bone, in addition to the variation in mate-

rial properties that has been documented among different

types of bone (Rho et al. 1997, 1999a,b; Zysset et al. 1999)

and among regions in a particular bone, such as the tibia

(Fan et al. 2002). Here, we have examined modulus varia-

tion in the mid-cortex of the femoral diaphysis, but there

remain other spatial dimensions along with mineralization

and hence modulus may vary; little is known about material

properties around the periosteal or endosteal circumfer-

ences of the diaphysis, along the longitudinal axis, or in

subchondral bone. These regions are deserving of study to

fully understand variation in material properties in the skel-

eton. Such data would be beneficial for a full understand-

ing of the micro-scale mechanics of bone in a variety of

ways, including, for example, finite element modeling stud-

ies. With expanded access of lCT, geometrically accurate

models can be constructed with increasing ease (Rüegsegger,

2001), and the most accurate finite element models should

be able to account for bone anisotropy and regional varia-

tion in moduli.

Intra-bone regional stiffness

Using micromechanical testing, Ramasamy & Akkus (2007)

found that femoral cortical bone in the anterior quadrant

was significantly stiffer when loaded in tension than bone

in the posterior quadrant in Swiss Webster mice. In the pres-

ent study, we used a compressive test, nanoindentation, to

compare all four quadrants. As in our sample of mice

described herein, Ramasamy & Akkus (2007) found no dif-

ferences in the compressive properties of the anterior and

posterior quadrants.

Direct in vivo measurement of bone strain from the long

bones of dogs and horses (Rubin & Lanyon, 1982), chickens

(Biewener et al. 1986) and rats (Mosley et al. 1997) has

shown that convex regions of long bones are loaded in ten-

sion and concave areas in compression. Because bone has

been shown to respond adaptively to the local loading envi-

ronment (van der Meulen et al. 1993; van der Meulen &

Huiskes, 2002), anterior and posterior quadrants should

therefore differ in mechanical properties.

Although at least an order of magnitude smaller in body

mass than any dogs or horses, mice possess femora that are

nonetheless similar in shape and overall curvature. Com-

pressive loading of the bone as a whole, as would be expe-

rienced during locomotion, will cause the anteriorly convex

surface to experience tension and the posterior surface to

experience primarily compression (Biewener et al. 1983).

However, because of logistical difficulties of instrumenting

small bones with strain gauges, only two studies have

reported in vivo bone strains in mice. De Souza et al. (2005)

recorded strains from the tibia, and Lee et al. (2002)

recorded strains from the ulna. Due to the size of the

bones, only a single element strain gauge was used in both

studies. As such, the pattern of in vivo bone strain, e.g.

bending vs. torsional loads, in the mouse femur has yet to

be documented empirically.

Differences in mineralization patterns between small and

large mammals may result from variation in posture and

mechanical loading (Biewener, 1983; Fischer et al. 2002;

Witte et al. 2002), from differences in physiology (e.g. met-

abolic rate, mineral metabolism; Taylor et al. 1970), or from

a combination of both. Many authors (e.g. Taylor, 1998,

2000; Taylor et al. 1999; Martin, 2000, 2007; Taylor &

Kuiper, 2001; Bigley et al. 2007) have observed that bone

remodeling is dependent on a threshold volume of bone

that is larger than the entire mouse femur. If bone remodel-

ing occurs in this manner for mammals of all sizes, then the

limb bones of small mammals cannot remodel in the same

manner as those of large mammals. In small mammals,

bone strength may be more dependent on patterns of corti-

cal bone growth that can differentially thicken specific
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regions of the cortex, and ⁄ or upon collagen fiber orienta-

tion (e.g. Skedros & Hunt, 2004; Skedros et al. 2009). Studies

of relative bone growth rates and comparisons of collagen

fiber orientation between wheel-exercised and control mice

are may shed light on the relevance of these phenomena

for explaining the patterns observed here.

Bone mineralization in mice bred for high levels of

voluntary wheel running

We observed no significant differences in either morpho-

metric traits or bone stiffness attributable to an exercise

effect in this population of female mice, although we do

find significant differences attributable to the selection

regime (Tables 1 and 2). The former result is surprising, con-

sidering the extensive literature demonstrating osteogenic

responses to mechanical loading (e.g. Carter, 1982; Lanyon

et al. 1982; Rubin, 1984; Rubin & Lanyon, 1985; Carter et al.

1987; Frost, 1990, 2003; Lanyon, 1993; Huiskes et al. 2000;

Kodama et al. 2000; Parfitt, 2004; Kesavan et al. 2006,

2007). Although wheel running likely engenders smaller

loads than artificially produced three- or four-point bend-

ing, Kelly et al. (2006) did find significant effects of activity

on bone morphology in male mice (e.g. larger femoral

heads, wider distal femoral condyles, larger anteroposterior

and mediolateral femoral diameters). Although we are not

able to rule out the role of increased home-cage activity in

HR mice (Malisch et al. 2009) in muting bone’s response to

wheel-running, two distinctive physiological characteristics

in female HR mice suggest that the mechanical adaptation

of the skeleton to the mechanical environment may be con-

strained in specific ways in female HR mice.

First, in at least one sample of female HR mice from this

artificial selection experiment, levels of circulating leptin

were significantly lower than in C mice (Girard et al. 2007;

also see Vaanholt et al. 2007, 2008). This change may lead

to decreased bone mineralization, as has been observed in

some studies of leptin-deficient or leptin-insensitive mice

(Steppan et al. 2000; Cornish et al. 2002; but for conflict-

ing results also see Ducy et al. 2000; Karsenty, 2006). Sec-

ondly, female HR mice in the selection experiment appear

to have altered signaling in the cannabinoid receptor CB1

pathway (Keeney et al. 2008). Recently, both the CB1

(Tam et al. 2006, 2008; Bab, 2007; Bab & Zimmer, 2008; Id-

ris et al. 2009) and CB2 (Idris et al. 2005; Ofek et al. 2006;

Rossi et al. 2009) endocannabinoid receptor pathways

have been implicated in the regulation of bone mass.

CB1-null mice exhibit an increased bone mass phenotype,

but bones in male and female mice respond differently,

with males generally showing a greater phenotypic

response than females (Tam et al. 2006). Such sex-specific

effects of CB1 signaling may account for the variation we

have observed in skeletal responses to mechanical loading

in distinct, sex-specific populations of mice that are part

of this selection experiment.

We hypothesize that the nearly threefold increased num-

ber of wheel revolutions observed in HR mice compared to

C mice, as well as increased home-cage activity (Garland,

2003; Malisch et al. 2008, 2009), may compensate for the

deleterious effects on bone mineralization of decreased lep-

tin levels and altered signaling in the CB1 pathway. How-

ever, muscular forces during these routine activities might

provide the ‘typical peak voluntary mechanical loads’ (Frost,

2003) required to maintain bone integrity. Future studies

will explore the roles of leptin and the CB1 pathway in

establishment and maintenance of bone macro- and micro-

structure.
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