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Abstract. -We use computer simulation to compare the statistical properties of several methods 
that have been proposed for estimating the evolutionary correlation between two continuous traits, 
and define alternative evolutionary correlations that may be of interest. We focus on Felsenstein's 
(1985) method and some variations of it and on several "minimum evolution" methods (of which 
the procedure of Huey and Bennett [I9871 is a special case), as compared with a nonphylogenetic 
correlation. The last, a simple correlation of trait values across the tips of a phylogeny, virtually 
always yields inflated Type I error rates, relatively low power, and relatively poor estimates of 
evolutionary correlations. We therefore cannot recommend its use. In contrast, Felsenstein's (1 985) 
method yields acceptable significance tests, high power, and good estimates of what we term the 
input correlation and the standardized realized evolutionary correlation, given complete phylo- 
genetic information and knowledge of the rate and mode of character change (e.g., gradual and 
proportional to time ["Brownian motion"] or punctuational, with change only at speciation events). 
Inaccurate branch length information may affect any method adversely, but only rarely does it 
cause Felsenstein's (1985) method to perform worse than do the others tested. Other proposed 
methods generally yield inflated Type I error rates and have lower power. However, certain min- 
imum evolution methods (although not the specific procedure used by Huey and Bennett [1987]) 
often provide more accurate estimates of what we term the unstandardized realized evolutionary 
correlation, and their use is recommended when estimation of this correlation is desired. We also 
demonstrate how correct Type I error rates can be obtained for any method by reference to an 
empirical null distribution derived from computer simulations, and provide practical suggestions 
on choosing an analytical method, based both on the evolutionary correlation of interest and on 
the availability of branch lengths and knowledge of the model of evolutionary change appropriate 
for the characters being analyzed. Computer programs that implement the various methods and 
that will simulate (correlated) character evolution along a known phylogeny are available from the 
authors on request. These programs can be used to test the effectiveness of any new methods that 
might be proposed, and to check the generality of our conclusions with regard to other phylogenies. 
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Much of evolutionary biology is inher- 
ently historical in nature. Although the fos- 
sil record provides the only direct evidence 
of past changes, attempts to reconstruct the 
evolutionary history of features of organ- 
isms based primarily or exclusively on 
neontological data are common. This is par- 
ticularly true for some types of traits, such 
as behavior or physiology, for which pale- 
ontological evidence is rarely available. If a 
single trait is studied, a common goal is to 
infer its state in an ancestral form, generally 
based on some sort of parsimony argument 
(e.g., Fams, 1970; Ruben and Bennett, 1980; 
Larson, 1984; Campbell et al., 1985; Swof- 
ford and Maddison, 1 987; Donoghue, 1989; 
Maddison, 1990). Alternatively, the distri- 
bution of a trait may be examined in rela- 
tion to ecological or environmental char- 
acteristics (Huey, 1987). Relationships 

identified by such comparisons may be used 
to formulate hypotheses about adaptation 
or to test preexisting hypotheses (Harvey 
and Mace, 1982; Ridley, 1983; Greene, 
1986; Lauder, 1986; Huey, 1987; Krebs and 
Davies, 1987 Ch. 2; Coddington, 1988; Git- 
tleman, 1988; Hailman, 1988; Bell, 1989; 
Donoghue, 1989; Harvey and Pagel, 199 1). 

Another common question in compara- 
tive studies is whether traits have evolved 
in a correlated fashion (e.g., Huey and Ben- 
nett, 1987; Sessions and Larson, 1987; Lo- 
sos, 1990). Typically, species are compared 
and patterns are defined by the existence of 
statistically significant relationships be- 
tween traits. However, because organisms 
descend in a hierarchical fashion from com- 
mon ancestors, data for different species are 
not independent and standard statistical 
techniques are inappropriate for compara- 
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tive analyses (e.g., Felsenstein, 1985). A 
number of quantitative methods for infer- 
ring relationships between traits, while tak- 
ing phylogeny into account, have therefore 
been proposed (reviews in Ridley, 1983; 
Felsenstein, 1988; Page1 and Harvey, 1988a; 
Maddison, 1990; Harvey and Pagel, 199 1). 

Our purpose herein is to use computer 
simulation to compare the assumptions, 
statistical properties, and practical appli- 
cability of several methods for testing 
whether two continuous traits have evolved 
in a correlated fashion. Practical consider- 
ations do not allow us to consider all avail- 
able methods; rather, we have chosen some 
that are becoming well known and that may 
be seen as exemplars of three larger cate- 
gories of approaches. We did not consider 
methods designed for categorical characters 
(e.g., Ridley, 1983; Maddison, 1990) or 
which address the rather different problem 
of separating the effects of phylogenetic "in- 
ertia" or "constraints" from specific adap- 
tation (cf. Ballinger, 1983; Cheverud et al., 
1985; Bell, 1989), although at least two of 
these methods (Cheverud et al., 1985; 
Lynch, 199 1) may also be used to test for 
correlated evolution (cf. Gittleman and Kot, 
1990). In all cases, we assumed the true phy- 
logeny for the species being compared was 
known to the level of an entirely dichoto- 
mous topology. Thus, we did not consider 
problems introduced by errors in the avail- 
able topology or by unresolved polytomies 
("unrecognized phylogeny" sensu Grafen, 
1989). We assumed also that the available 
phylogeny was based on characters inde- 
pendent of those being studied for evolu- 
tionary correlation (Felsenstein, 1985, 
1988). 

The first general category of comparative 
methods we consider consists of those that 
are explicitly nonphylogenetic. As an ex- 
ample, we consider a simple correlation 
across the tips of a phylogeny (nested ANO- 
VA approaches are a special case of this, as 
discussed below). Although this procedure 
is, in principle, known to be statistically un- 
acceptable for hypothesis testing, how poor- 
ly it actually performs has been quantified 
only by Grafen (1989). 

The second category of approaches is de- 
rived from Felsenstein's (1985) method of 
standardized independent contrasts. Fel- 

senstein's (1985) method has been shown 
analytically to yield acceptable significance 
tests, but requires complete knowledge of 
both phylogenetic topology and branch 
lengths (in units of expected variance of 
character change). Moreover, how well it 
estimates the evolutionary relationship be- 
tween traits has not been considered. We 
wished, therefore, to verify its performance 
through computer simulation, to determine 
how susceptible it is to incomplete or in- 
accurate knowledge of branch lengths (or, 
equivalently, rates of character change), to 
test its ability to estimate different evolu- 
tionary correlations (see below), and to test 
some variants of this method. 

The third category of approaches is "min- 
imum evolution" methods, similar to that 
applied by Huey and Bennett (1987). These 
methods were originally proposed for ex- 
plicit reconstruction of ancestral states and 
hence might be expected to provide better 
estimates of correlations among the evolu- 
tionary changes occurring in two traits. To 
test this possibility, we define three types of 
evolutionary correlation that may be de- 
sired, and test the abilities of all methods 
to estimate these. This distinction is im- 
portant, because most authors have not been 
explicit as to what, exactly, is being esti- 
mated by a particular method, and because 
the different evolutionary correlations vary 
in statistical and biological relevance. Ac- 
ceptable means of hypothesis testing have 
not been proposed for minimum evolution 
methods. We therefore develop a procedure 
for obtaining appropriate significance tests 
through the creation of computer-simulated 
null distributions. This procedure can be 
used for hypothesis testing with any meth- 
od, and therefore allows us to choose among 
methods for reasons other than hypothesis 
testing (e.g., statistical estimation). Overall, 
we provide a framework within which any 
new comparative methods may be tested. 

METHODS 
The Methods Compared. -We tested three 

categories of approaches in this study. The 
"TIPS" method (Table 1) is simply a Pear- 
son product-moment correlation between 
the raw values of two traits for a series of 
species. TIPS is the traditional "equilibri- 
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TABLE 1. Short descriptions of the comparative methods tested and abbreviations used in the text. 

Abbre- 
vlation 

TIPS 

FLlG 
FL2G 
FLlP 
FL2P 
MElG 
ME2G 
MElP 
ME2P 

Assumed model of 
evolutionary change 

Not specified 

Gradual 
Gradual 
Punctuational 
Punctuational 
Gradual , 

Gradual 
Punctuational 
Punctuational 

Descnpt~on 

The traditional nonphylogenetic "equilibrium" approach, a simple Pearson 
product-moment correlation of species values across the tips of a phyloge- 
ny 

Felsenstein's (1 985) method of standardized contrasts 
Felsenstein's (1 985) method, but not standardizing contrasts 
Felsenstein's (1985) method of standardized contrasts 
Felsenstein's (1985) method, but not standardizing contrasts 
Minimum evolution method using all inferred changes along the phylogeny 
Minimum evolution method using only inferred changes that lead to tips 
Minimum evolution method using all inferred changes along the phylogeny 
Minimum evolution method using only inferred changes that lead to tips 

(method most similar to that used by Huey and Bennett, 1987) 

um" analysis (Lauder, 198 1; Huey, 1987), 
and has been termed the "nonphylogenetic 
approach" by Felsenstein (1988) and the 
"naive species regression" by Grafen (1 989). 
TIPS has been criticized primarily because 
trait values measured in different species are 
not independent of each other, and thus 
should not be used with most standard sta- 
tistical tests (e.g., Felsenstein, 198 5). The 
TIPS method would be adequate for com- 
parative studies if (1) phylogenetic inertia 
were entirely absent, in which case char- 
acters would respond instantaneously to 
natural selection in the current environment 
(Felsenstein, 1985 p. 6) or (2) the species 
studied derived from a "star" phylogeny as 
depicted in Felsenstein's (1 98 5) Figure 2. 
Otherwise, the problem of nonindependent 
data points translates statistically into a 
question concerning the appropriate degrees 
of freedom to be used in tests of significance 
(Felsenstein, 198 5). Hierarchical phyloge- 
netic relationships between species effec- 
tively decrease the available degrees of free- 
dom by some unknown quantity. 

Ignorance concerning appropriate de- 
grees of freedom can be dealt with in various 
ways. Crook (1 965) suggested comparing 
means for higher taxonomic units to achieve 
greater independence of points. Clutton- 
Brock and Harvey (1 977, 1984; Harvey and 
Mace, 1982; see also Bell, 1989) suggested 
a similar approach, but using nested anal- 
ysis of variance to determine nonarbitrarily 
which taxonomic level should be used for 
averaging. These methods require phylo- 
genetic information in that they implicitly 
assume that taxa represent monophyletic 

groups of comparable age and hence com- 
parable expected amounts of within-taxon 
divergence. Although such methods may re- 
duce the problem of statistical noninde- 
pendence, they "are only a partial solution" 
(Clutton-Brock and Harvey, 1977 p. 8). Just 
as species within a genus may not be in- 
dependent, so may genera within a family 
not be independent. Nested ANOVA ap- 
proaches thus represent a special case of 
TIPS, in which some attempt to decrease 
the effects of nonindependence has been 
made by prior taxonomic averaging. They 
are arbitrary to the extent that all taxonomic 
levels are arbitrary, and they are inefficient 
as they discard information from taxonom- 
ic levels below that at which averaging is 
performed. Harvey and Page1 (1 99 1) con- 
clude that nested ANOVA approaches are 
now obsolete, and we do not consider them 
separately. 

The second category of approaches we 
tested solves the problem of nonindepen- 
dence by computing statistics that describe 
the available data, but that are independent 
of each other. For example, Felsenstein's 
(1 985, 1988; see also Burt, 1989) technique 
computes statistically independent con- 
trasts for each trait. Appropriately stan- 
dardized, these contrasts can be viewed as 
having been drawn from a normal proba- 
bility distribution with mean of zero and 
unit variance; thus, exact significance tests 
are available. Standardization requires that 
branch lengths be available in units of ex- 
pected variance of evolutionary change for 
the characters of interest. If the rate of evo- 
lution is assumed to be constant, then these 
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branch lengths can be estimated as absolute 
or relative time. If rates of evolution are not 
constant over the entire tree, standardiza- 
tion is still possible, but details of the rate 
changes must be known. 

We tested both Felsenstein's (1 985) orig- 
inal method and a variant under two models 
of evolutionary change. In method "FL1G7' 
(Table l), change was assumed to occur 
gradually such that the expected variance of 
change in each trait was simply proportional 
to time. Standardization was thus accom- 
plished by dividing each contrast by the 
square root of the sum of the branch lengths 
(in units of relative time). (Felsenstein's sX2 
and sy2, which indicate the relative rates at 
which two traits evolve, are not used for 
computation of correlation coefficients, and 
may be ignored.) In "FLlP" (Table l), 
change was assumed to be "punctuational," 
(or "speciational," Rohlf et al., 1990), oc- 
cumng only at speciation events, such that 
the expected variance of change in each trait 
was proportional to the number of specia- 
tion events on the phylogeny. (A further im- 
plicit assumption is that all speciation events 
within the clade, whether leading to mea- 
sured species or not, are known and count- 
ed.) Under this model, appropriate stan- 
dardization of contrasts was accomplished 
by setting all branch lengths equal (the spe- 
cific value used does not matter) and divid- 
ing each contrast as before by the square 
root of the sum of the branch lengths (i.e., 

the square root of the sum of the number 
of speciation events occurring along a 
branch). 

The desirability of standardizing con- 
trasts in the way proposed by Felsenstein 
(1985) is unclear (cf. Felsenstein, 1988 p. 
465; Bell, 1988 pp. 554, 565; Harvey and 
Pagel, 199 1). For example, under a gradual 
model of change, this method of standard- 
ization implies that evolutionary changes 
occumng over short periods of time are 
weighted equally to those occumng over 
longer periods of time. Alternatively, 
changes occumng over long periods of time 
can be given greater weight simply by com- 
puting a correlation between nonstandard- 
ized contrasts ("FL2"), although standard 
significance tests would not be appropriate. 
For both FLl and FL2, nodal values used 
to compute contrasts were estimated as the 
weighted average of the values for the two 
descendents of that node (as indicated by 
Felsenstein, 1985) with weights being pro- 
portional to branch lengths in units of ex- 
pected variance of change. Again, we tested 
two models of evolutionary change, and 
designated the correlation from the non- 
standardized gradual version of Felsen- 
stein's (1 985) method "FL2G7' and the cor- 
relation from the nonstandardized 
punctuational version "FL2P" (Table 1). 
Once contrasts were obtained for each of 
these four versions, we calculated correla- 
tion coefficients by the following formula: 

[(Contrast Trait A) x (Contrast Trait B)] 

Lz (Contrast Trait A)' x 2 (Contrast Trait B)' 1 

Although intuitively appealing, branch 
lengths in units of time do not necessarily 
provide the best estimate of expected vari- 
ance of character change, unless evolution 
is gradual and clock-like. As an alternative, 
Grafen (1 989) developed the "phylogenetic 
regression," which can be used with incom- 
plete phylogenetic information (ignorance 
of branch lengths and/or unresolved poly- 
tomies). This method employs maximum 

likelihood to obtain estimates of "branch 
lengths" in units of expected variance of 
change. These branch lengths are then used 
to standardize contrasts (equivalent to those 
of Felsenstein [1985]), on which statistical 
analyses can be performed. As another al- 
ternative, Harvey and Page1 (1991) suggest 
calculating contrasts as described by Fel- 
senstein (1985), and then using residual 
analysis and, if necessary, weighted regres- 
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sion as a remedial measure to determine 
whether contrasts actually require standard- 
ization for significance testing. Thus, Fel- 
senstein's, Grafen's, and Harvey and Pagel's 
procedures all offer significance tests based 
on explicit statistical assumptions. As dif- 
ferences among these three procedures will 
be due primarily to the accuracy of the 
available phylogenetic information (includ- 
ing rates of character change), we do not test 
either Grafen's or Harvey and Pagel's meth- 
ods separately. A useful extension of our 
comparisons would be to determine how 
much statistical performance declines if one 
(unnecessarily) applies Grafen's (1989) or 
Harvey and Pagel's (1 99 1) procedures even 
when complete and accurate phylogenetic 
information is available. 

A third way to deal with the degrees of 
freedom problem in hypothesis testing is by 
using a sort of randomization test that takes 
phylogeny into account. This requires that 
a topology be available and that one be will- 
ing to specify a model of evolutionary change 
(e.g., gradual or punctuational). The usual 
null hypothesis in comparative studies is 
that of no relationship between traits. Thus, 
the evolution of traits showing no correla- 
tion may be simulated many times along a 
known phylogeny, until multiple sets of spe- 
cies values are obtained. Analysis of these 
data by any method will result in the cre- 
ation of an empirical null distribution of 
correlation coefficients for that method on 
that phylogeny. Hypothesis testing of the 
results of analysis of real data may then be 
conducted by comparison with this null dis- 
tribution rather than against standard dis- 
tributions of critical values to obtain rea- 
sonable Type I error rates despite problems 
of nonindependence. It is important to note 
that all proposed methods of phylogenetic 
analysis make implicit assumptions con- 
cerning patterns and rates of evolutionary 
change of the traits being considered. Cre- 
ation of computer-simulated null distribu- 
tions requires that these assumptions be 
made explicit. 

This third procedure for hypothesis test- 
ing is also useful as it allows us to consider 
the third category of methods, which does 
not deal explicitly with the problem of non- 
independence, but which may be preferred 
for other reasons (e.g., statistical estima- 
tion). For example, some authors developed 

methods in which nodal values on a phy- 
logeny are inferred, changes along branch 
segments are computed, and those changes 
are used to compute a correlation (e.g., Far- 
ris, 1970; Huey and Bennett, 1987; Swof- 
ford and Maddison, 1987). As nodal values 
are inferred from the values of their descen- 
dents and hypothetical ancestors, these 
methods are also subject to the problem of 
nonindependence. The most common 
method of inferring nodal values is to use 
a parsimony or "minimum evolution" al- 
gorithm. (A problem with all parsimony re- 
constructions is that they may underesti- 
mate the frequency of parallel change 
[Felsenstein, 1983, 19851). This algorithm 
may minimize the sum of changes ("Wag- 
ner parsimony": Farris, 1970; Swofford and 
Maddison, 1987) or the sum of squared 
changes (Huey and Bennett, 1987; Maddi- 
son, 199 1). These alternatives may yield dif- 
ferent results, but we suspect such differ- 
ences will depend primarily on the 
phylogeny in question rather than on in- 
trinsic differences between the algorithms. 
One difficulty with implementing Farris' 
(1970) algorithm is that it may yield mul- 
tiple solutions (Swofford and Maddison, 
1987). For the sake of simplicity, and to 
avoid complications due to multiple solu- 
tions, we chose to test only minimum evo- 
lution methods based on an algorithm that 
minimizes the sum of squared changes. 

We first used an iterative "means algo- 
rithm" that estimates nodal values on a 
phylogeny by setting each node equal to the 
mean of the nearest three nodes or tips (Huey 
and Bennett, 1987; see Maddison, 199 1, for 
a direct algorithm for estimating nodal val- 
ues). Means were computed in two different 
ways. The first involved weighting by branch 
lengths in units of time, which is appropri- 
ate under a gradual model of character 
change ("ME-G"); the second assumed all 
branch lengths were equal, which is appro- 
priate for a punctuational model of change 
("ME-P") (Table 1). Once nodal values 
were computed, inferred changes between 
connected points on the phylogeny were ob- 
tained by simple subtraction. Differences 
were calculated between all connected points 
on the phylogeny ( " M E 1 " )  or only be- 
tween nodes and tips ("ME2,"), as was 
done by Huey and Bennett (1987). Finally, 
a standard Pearson product-moment cor- 
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relation coefficient between these inferred 
changes for the two traits was computed (see 
Appendix A for an example). 

Huey and Bennett (1 987) actually applied 
a special case of the general minimum evo- 
lution method we have outlined. They per- 
formed the iterative means algorithm on 
generic averages (rather than on species val- 
ues), assuming all branch lengths were equal 
(as in our "punctuational" model of evo- 
lutionary change, MEP), and without al- 
lowing change on the branch leading to the 
"outgroup." They then computed changes 
between nodes and tips only (as in our ME2) 
due to uncertainty as to proper degrees of 
freedom and in order to avoid using more 
data points than original tips (R. B. Huey, 
pers. comm.). Finally, they computed a least- 
squares linear regression between the 
changes for the two traits, and significance 
tested with N - 2 degrees of freedom, with 
N equal to the number of changes between 
nodes and tips (excluding the "outgroup"). 
Actual Type I error rates under this pro- 
cedure are unknown. Except for the generic 
averaging, Huey and Bennett's (1987) pro- 
cedure is most similar to the version we 
have termed ME2P. 

Alternative Evolutionary Correlations. - 
One can view the evolutionary changes in 
two traits occurring at each generation as 
random variables drawn from a bivariate 
probability distribution of possible changes. 
This probability distribution is determined 
by prevailing selection pressures, by genetic 
and environmental correlations (and their 
interactions), and by random genetic drift, 
mutation, gene flow, and any other factors 
affecting gene frequencies within a popula- 
tion. The parameters of the probability dis- 
tribution describe a specific pattern of evo- 
lutionary change. For example, a bivariate 
probability distribution with means of zero 
and a correlation of 0.5 would indicate no 
net change, on average, in either character, 
but an overall trend for positive correlation 
between changes in the two characters. The 
relationship between the evolutionary 
changes in two traits might thus be de- 
scribed by the correlation of the bivariate 
probability distribution from which changes 
are drawn, which we term the input corre- 
lation (Fig. 1). 

The actual pattern of correlated changes 
that occurs in a particular group of organ- 

isms from generation to generation may dif- 
fer from the parameters of the input distri- 
bution. Thus, for some purposes, a statistic 
that estimates the correlation of actual evo- 
lutionary changes in the traits at each gen- 
eration might be preferred. This correlation 
across generations (Fig. l), is a realization 
of finite sampling from the input distribu- 
tion. In the laboratory, barnyard, or garden, 
one might actually observe such changes. 
Similarly, the fossil record sometimes may 
approach the resolution necessary to quan- 
tify changes in two traits as they occurred 
over multiple generations (e.g., Williamson, 
1981). The correlation across generations 
could not be computed from our simula- 
tions, simply because changes did not occur 
every generation. Although the correlation 
between the actual changes drawn during 
any single simulation was available, this is 
not very useful because the error variance 
of this statistic depends on the frequency of 
sampling, which was determined for prac- 
tical rather than biological reasons (see be- 
low). 

A similar but more accessible type of evo- 
lutionary correlation is based on changes 
that occur between speciation events (cf. 
Huey and Bennett, 1987). Given an inde- 
pendently derived phylogeny, one can es- 
timate values for each trait of interest at the 
nodes (hypothetical ancestors), for example 
by using a minimum evolution (parsimony) 
algorithm, as discussed in the previous sec- 
tion. Simple subtraction between trait val- 
ues for points on the phylogeny then yields 
the inferred changes in each character. The 
correlation of these changes we term the 
realized evolutionary correlation (Fig. 1). The 
realized evolutionary correlation was cal- 
culated from the simulated data as the cor- 
relation between internode differences in 
each trait, with each difference being either 
standardized (SREC) or not standardized 
(UREC). Standardization was accom- 
plished by dividing the difference between 
each set of points on the phylogeny by the 
square root of the branch length (in units of 
expected variance of change) along which 
the difference occurred. This standardiza- 
tion differentially weights changes occumng 
along different branches, as discussed above 
for FL 1 and FL2. 

As shown in Figure 1, the correlation 
across generations, as a finite sample from 
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FIG. I .  Alternative correlations which may be used to describe the evolutionary relationships between traits. 
(a) The bivariate (normal) distribution from which changes are drawn each generation. The correlation of this 
distribution is termed the input correlation. Five hundred points are depicted, nine of which (open circles) were 
randomly sampled to produce the correlation across generations, depicted in (b). In this example, these nine 
randomly selected points yield a correlation of +0.321 between changes in trait A (top) and changes in trait B 
(bottom). (c) The changes that produce the correlation across generations can be grouped into changes that occur 
between nodes (hypothetical ancestors, italicized) and from nodes to tips of the phylogeny. The (unstandardized) 
realized evolutionary correlation is computed from these changes, and equals -0.389 in this example. 

the probability distribution of possible 
changes, may serve as an estimate of the 
input correlation. In turn, the realized evo- 
lutionary correlation results from grouping 
the changes used to obtain the correlation 
across generations, and may serve as an es- 
timate of it. The relationship between these 
three statistics might be viewed as a sort of 
random effects model, in which the realized 
evolutionary correlation is a function of (1) 
the input correlation, (2) the sampling re- 
alization of the input correlation, which 
constitutes the correlation across genera- 
tions in a particular trial (actual evolution 
or simulation), and (3) a random error term. 

Just as nonindependence due to phylo- 
genetic relationships causes problems for 

significance testing, so too may it lead to 
inaccuracies of estimation. If, for example, 
some clades are more speciose than others, 
and if phylogenetic inertia is strong for the 
traits of interest, then estimates of the cor- 
relation between these traits may be biased 
by those clades containing large numbers of 
species (as noted by Harvey and Mace, 1982 
p. 346). Differential probabilities of speci- 
ation and/or extinction that are correlat- 
ed with the traits being studied might also 
lead to biases. Which evolutionary corre- 
lation TIPS best estimates has not been dis- 
cussed. Felsenstein's (1 985) method is ex- 
plicitly designed to estimate the input 
correlation, whereas minimum evolution 
methods seem intended to estimate realized 
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FIG. 2. Phylogeny for 15 species of plethodontid 
salamanders, from Sessions and Larson's (1 987) Figure 
3. Vertical axis represents time since divergence; hor- 
izontal axis is arbitrary. 

i 
I 

b) 
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evolutionary correlations (cf. Huey and 
Bennett, 1987). 

Computer Simulation of Data. -Each of 
the methods described above was used to 
analyze data created by computer simula- 
tion. Simulated evolution was begun at the 
base of a known phylogeny, and random 
changes were added to the previous value 
at each step until trait values were obtained 
for each species on the phylogeny. Simu- 
lations were repeated 1,000 times for each 
combination of phylogeny and model of 
character change. Analysis of the simulated 
species values by each of the methods thus 
resulted in distributions of 1,000 correla- 
tion coefficients for each method. 

We felt it appropriate to begin our studies 
with a single phylogeny-one actually used 
in a comparative study. Sessions and Larson 
(1987) used Felsenstein's (1985) method in 
a study of developmental correlates of ge- 
nome size in plethodontid salamanders (see 
also Burt, 1989). We thus used their phy- 
logeny for 15 species (based on morpholog- 
ical and biochemical data), as depicted in 
their Figure 3 and in our Figure 2. We also 
modified this phylogeny to represent ex- 
treme situations. First, we created what is 
almost a "star" phylogeny (Fig. 3a), with all 

FIG. 3. Phylogeny (from Fig. 2), with branch lengths 
modified (a) to increase independence among contem- 
porary tip species and (b) to decrease independence 
among contemporary tip species. 

divergence occurring very early in the ra- 
diation (we arbitrarily made all internode 
branch lengths equal to one million years). 
Second, we created the opposite of a star 
phylogeny, with almost all divergence oc- 
curring very late in the radiation (Fig. 3b), 
thus aggravating the problem of noninde- 
pendence among species. Simulating data 
along one of these two phylogenies and then 
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a1 "Symmetncal' 
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FIG. 4. Phylogenies with topologies extremely dif- 
ferent from those of Figures 2 or 3. 

analyzing these data as ifthey applied to the 
other phylogeny allowed us to test the ro- 
bustness of methods when using extremely 
inaccurate branch length information. Fi- 
nally, we ran additional simulations on the 
two different topologies depicted in Figure 
4, one with rather symmetrical branching 

(Fig. 4a) and the other with branching in a 
somewhat comb-like pattern (Fig. 4b). 

The frequency at which random character 
changes were allowed to occur along the 
phylogeny was specified by the model of 
evolutionary change, either gradual or 
punctuational. Gradual change potentially 
occurs in each trait each generation [in which 
case, time may be used as an estimate of 
expected variance of change in both Felsen- 
stein's (1985) and minimum evolution 
analyses]. Equivalently, we noted the lowest 
common denominator of all branch lengths, 
converted all branch lengths to multiples of 
this common denominator, then allowed 
each character to change this number of 
times along a given branch. 

An extreme punctuational model, in con- 
trast, requires that all evolutionary change 
occurs during or soon after speciation events 
(e.g., Eldredge and Gould, 1972; Gould and 
Eldredge, 1977), such that expected vari- 
ance of change is proportional to the num- 
ber of speciation events rather than to time. 
Purely punctuational change poses great 
conceptual problems for any comparative 
method. First, if change occurs only at spe- 
ciation events, then one would need to know 
of every past speciation event that had oc- 
curred anywhere within the clade being 
studied, regardless of whether the species 
were extinct or extant and regardless of 
whether they were actually included in the 
analysis. This knowledge would be neces- 
sary for proper standardization of contrasts 
in Felsenstein's (1985) method and for ap- 
propriate computation of nodes in mini- 
mum evolution methods. Second, some for- 
mulations of punctuated equilibrium allow 
change in only one of the two daughter lin- 
eages following a bifurcation (e.g., simula- 
tions by Raup and Gould, 1974; Colwell 
and Winkler, 1984). Ifevolution were known 
to occur strictly in this fashion, it would lead 
to difficult computational uncertainties ow- 
ing to lack of knowledge as to which of a 
pair of daughter species experienced char- 
acter change. We thus chose to assume that 
a single change occurred in both daughters 
following each bifurcation, as has been de- 
picted by Schopf (198 1) and Douglas and 
Avise (1982). Maynard Smith (1983 p. 21) 
points out that there is no compelling ge- 
netic reason to think it necessary that no 
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change would occur in the daughter species 
representing the large "mother" population. 

A separate issue is the form of the un- 
derlying distribution from which changes 
are drawn. Felsenstein (1 985, 1988) argued 
that if evolutionary change occurred as by 
Brownian motion (involving many small, 
independent changes), as in a gradual model 
of change, then the total change along any 
branch will be normally distributed with 
mean of zero and'variance proportional to 
the number of small, independent changes. 
As explained above, our simulations poten- 
tially use only a single change for the short- 
est branch on a tree. To ensure that the total 
change for each branch was normally dis- 
tributed, we drew individual changes in each 
trait from a bivariate normal probability 
distribution. 

For punctuational change, we know of no 
detailed discussions as to the appropriate 
distribution from which to draw changes. 
Other authors (e.g., Raup and Gould, 1974; 
Colwell and Winkler, 1984) offered no jus- 
tification for the use of any given distribu- 
tion in punctuational simulations. Colwell 
and Winkler (1984 p. 352) noted, however, 
that "a normal random distribution" might 
represent "a biologically more realistic rule 
for character change." One justification for 
using a normal distribution is that if punc- 
tuational change following bifurcations is 
due to bursts of genetic drift at multiple loci, 
then the distribution of such changes is ex- 
pected to approach normality (Slatkin and 
Lande, 1976; J. Felsenstein, pers. comm.). 
We therefore used a bivariate normal dis- 
tribution of changes for punctuational as well 
as for gradual simulations. 

In both cases, this distribution was cre- 
ated by first drawing pseudorandom num- 
bers from a uniform distribution, using Bor- 
land's Turbo Pascal 4.0 random number 
generator. These numbers were trans- 
formed using a Box-Mueller algorithm, and 
then combined into a bivariate normal dis- 
tribution with specified means, variances, 
and covariance. 

For heuristic purposes we performed sim- 
ulations that yielded means and variances 
for sets of simulated tips which were com- 
parable to those of real data (genome size: 
R = 33.6, s2 = 98.4; and regenerative growth 
rate: X = 5.4, s2 = 2.8) obtained from Ses- 

sions and Larson's (1987) Table 2 for each 
of the 15 species on the phylogeny of Figure 
2. (For calculating correlations, means and 
variances of a simulated data set are irrel- 
evant, but would be important for calcula- 
tion of slopes of linear regressions [cf. Pagel 
and Harvey, 1988bl.) A method of mo- 
ments estimator (developed by E. V. Nord- 
heim) was used to obtain the appropriate 
variances (as explained in our package of 
computer programs). To obtain tip values 
with the desired means, starting trait values 
were set equal to the means of Sessions and 
Larson's (1987) data, and means of the bi- 
variate normal probability distribution were 
set equal to zero. Thus, on average, the 
number of lineages showing net increase and 
net decrease in a given trait was equal, and, 
overall, a clade was expected to show no net 
directional change. 

Maintaining constant means and vari- 
ances for the bivariate distribution of char- 
acter changes yields stochastically constant 
rates of evolution in gradual simulations. 
This is consistent with assumptions re- 
quired for Felsenstein's (1985) method to 
yield accurate significance tests when simple 
time is used for branch lengths. For punc- 
tuational simulations, constant means and 
variances yield character change that varies 
in rate (i.e., change per unit time), since 
changes are drawn not in relation to time 
but in proportion to number of speciation 
events. 

Analysis. -To compare methods with re- 
gard to hypothesis testing, Type I error (the 
probability of rejecting the null hypothesis 
when it is in fact true-also termed "em- 
pirical size" or simply "size") was calculat- 
ed as compared to Pearson's r distribution 
with N - 2 = 13 df (two-tailed test). For 
TIPS, N - 2 is the usual degrees of freedom. 
For both variations of Felsenstein's (1985) 
procedure (FL1 and FL2), a total of N - 1 
independent contrasts are produced (where 
N = number of tip values). One df is lost in 
computing the correlation coefficient, leav- 
ing a total of (N - 1) - 1 = N - 2 dJ: For 
ME 1, 2N - 2 inferred changes are used to 
compute a correlation coefficient, whereas 
for ME2, only N changes are used (from 
most recent nodes to tips). As discussed 
above, several df are, in effect, lost by both 
minimum evolution methods, due to the 
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nonindependence of inferred changes, and 
the correct degrees of freedom for signifi- 
cance testing are unknown. One possibility 
would be to use N - 2 df; where N is the 
original number of tip values. Thus, we 
compared all methods to a standard distri- 
bution of critical values for a Pearson's r 
with N - 2 dJ: 

For each method, we determined the 
number of correlation coefficients exceeding 
the critical value given by the standard dis- 
tribution for Pearson's r (from Zar's, 1984 
Table B.16) at a = 0.005, 0.010, 0.020, 
0.050, 0.100, 0.200, 0.500, and 1.000. We 
then calculated the difference between the 
number of correlation coefficients exceeding 
successive a levels (i.e., between a = 0.005 
and 0.010, between a = 0.010 and 0.020, 
etc.). These observed differences were com- 
pared to expected differences, based on a 
standard Pearson's r distribution, by using 
a x2 goodness-of-fit test (a total of seven 
intervals was used, so results were com- 
pared to a x2 distribution with 6 df). Type 
I error rates for each method were calculated 
in this way for all simulations in which the 
null hypothesis was no correlation (i.e., the 
input correlation was zero). 

Power (the ability to detect nonzero re- 
lationships when they exist, defined for- 
mally as one minus the Type I1 error rate) 
was determined for each method by signif- 
icance testing against its own simulated null 
distribution. The power of each method (for 
a two-tailed test with a = 0.05) was calcu- 
lated for each of four alternative hypotheses 
(input correlation = 0.25, 0.50, 0.75, 0.90). 
Cochran's Q test was used to compare the 
power of different methods at each alter- 
native hypothesis, while bloclung by sim- 
ulation (N = 1,000). 

To compare estimation, the results for 
each method were compared to the input 
correlation and to the standardized and 
nonstandardized forms of the realized evo- 
lutionary correlation (Fig. 1). The mean de- 
viation (an index of the bias) and the mean 
deviation squared (MDS, an index of the 
mean squared error) of each method were 
calculated for all three evolutionary corre- 
lations. Ninety-five percent confidence in- 
tervals and nonparametric sign tests were 
used to test whether mean deviations for 
each method differed significantly from zero 

and were distributed symmetrically about 
zero, respectively. Friedman's test was used 
to compare the mean deviation and MDS 
of the different methods. (Friedman's test 
is a two-factor nonparametric test. For our 
analyses, one factor was the method, the 
other factor was the simulated data set, with 
1,000 levels.) 

As a final index of estimation, we com- 
puted coefficients of determination (r2) be- 
tween the distribution of correlation coef- 
ficients obtained for each method and the 
two distributions of realized evolutionary 
correlations. This allowed us to compare 
methods on the basis of predictive ability 
of these two forms of correlations. (Note 
that coefficients of determination are mea- 
sures of linear association only, and are not 
sensitive to bias; in practice, however, all 
of the methods we tested proved to be un- 
biased.) For an approximate statistical test 
of whether methods differed significantly in 
predictive ability, we arbitrarily split the 
simulated data for each input correlation 
into 10 groups of 100 sets. For each of the 
10 groups, we computed r2 between the re- 
sults for each method and either the UREC 
or the SREC, yielding 90 r2s for each evo- 
lutionary correlation being estimated. We 
then conducted 2-way ANOVAs without 
replication, with method (1-9; see Table 1) 
and "trial" (1 0 groups of 100 simulations) 
as factors, to test for differences among the 
methods while blocking for "trial" effects. 

Simulations of Gradual Character Change 
For two traits evolving gradually along 

the phylogeny of Figure 2, only Felsenstein's 
(1 985) method (FL lG) provided acceptable 
Type I error rates (Table 2; Fig. 5). All other 
methods tended to overestimate the signif- 
icance of the observed correlation (Table 2). 
Power was always highest for FLlG and 
lowest for TIPS (Table 3). 

Biases (as indicated by mean deviation) 
were always less than 0.025 in magnitude 
(Tables 2 and 4). Thus, all of the methods 
may, for all practical purposes, be consid- 
ered unbiased estimators of the input cor- 
relation and of the realized evolutionary 
correlations. (Bias increased and became 
significant as the input correlation increased 



TABLE 2. Statistical comparison of methods for estimating evolutionary correlations. The evolution of two independent traits was simulated 1,000 times along 
the phylogeny in Figure 3 (from Sessions and Larson, 1987), under a gradual model of change (changes drawn from a bivariate normal distribution of random 
numbers with means and covariance equal to zero). Means of simulated values across tips of phylogeny were 33.6 and 5.4; mean variances across tips were 99.5 
and 2.7. Simulated tip values were analyzed by each method to obtain a distribution of 1,000 correlation coefficients for each method. Two forms of realized 
evolutionary correlation (see text for explanation) also were obtained from the simulation (UREC and SREC). Type I error was calculated for several different P 
values (null hypothesis was a two-tailed r distribution with N - 2 = 13 d l  critical value at a = 0.05 is 0.5 14, for example) and intewals of Type I error were 
compared to an expected distribution with a x2 goodness-of-fit test (df = 6, a = 0.05, critical value = 12.6). Mean deviation = (method - REC) x 1,000. Mean ? 
deviation squared = (method - REC)~ x 1,000. P 

c: 
Compared to 

- 
=! 

Unstandardized realized Standardized realized 
0 

Input correlatxon evolutionary correlation evolutionary correlation z 
n w 

Percentiles or = 0.05 x2 Mean Mean Mean '3 
Type 1 Type 1 dev. MDS dev. MDS 9 dev. MDS 

Method 2.5 error x 103 x lo3 
9 

x103  x 1 0 3  (%) x 1 0 3  x103 (96) 0 97.5 2.5-97.5 Variance error 0 

TIPS -0.636 0.694 1.330 0.122 0.159 177.15* 3.53 122.2 2.10 80.6 34.8 2.34 87.3 28.5 

FLlG -0.513 0.507 1.020 0.072 0.046 8.52 -2.47 72.1 -3.91 45.0 42.9 -3.67 36.4 49.5 
FL2G -0.569 0.572 1.141 0.088 0.074 23.84* -0.57 88.1 -2.00 38.1 57.0 -1.76 52.5 40.4 
FLlP -0.563 0.559 1.122 0.087 0.078 38.01* -1.95 87.2 -3.38 37.4 57.4 -3.14 51.8 40.6 
FL2P -0.570 0.576 1.146 0.092 0.089 45.07* -1.51 92.0 -2.94 39.5 57.1 -2.71 56.2 38.9 

MElG -0.582 0.594 1.176 0.094 0.091 40.63* -1.08 93.4 -2.51 38.7 58.6 -2.28 58.1 37.9 
ME2G -0.639 0.646 1.285 0.113 0.139 132.67* 2.35 113.2 0.92 55.5 50.9 1.16 79.5 29.8 
MElP -0.567 0.549 1.116 0.086 0.074 27.96* -2.26 85.5 -3.70 38.2 55.8 -3.46 50.3 41.2 
MEZP -0.617 0.589 1.206 0.098 0.097 49.12* -2.29 97.9 -3.72 55.0 44.7 -3.49 64.1 34.6 

Friedman's 
test x2 2.08' 246.32 2.08' 404.02 2.08' 515.92 

UREC -0.463 0.464 0.927 0.057 
SREC -0.400 0.377 0.777 0.037 

* P < 0.05. ' 95% confidence intervals for all mean deviations in these analyses included zero. 
MDS differs significantly among methods. 
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TABLE 3. Power of methods for estimating the input correlation of a distribution from which changes are 
drawn. The power of each method (for a two-tailed test, or = 0.05) was calculated for each of four alternative 
hypotheses (input correlation = 0.25, 0.50, 0.75, 0.90) by comparing the distribution of results for each method 
with the appropriate simulated null distribution (input correlation = 0, from Table 2). Power is the proportion 
of correlation coefficients in the alternative distribution that exceeds the critical value (upper or lower 2.5 
percentile) provided by the null distribution of that method. 

Input correlation of alternative distribution 

Method 0.25 0.50 0.75 0.90 

TIPS 0.082 0.258 0.682 0.972 
FLlG 0.161 0.533 0.941 1.000 
FL2G 0.130 0.403 0.873 0.997 
FLIP 0.143 0.4 18 0.893 0.999 
FL2P 0.134 0.392 0.864 0.997 
MElG 0.117 0.358 0.846 0.996 
ME2G 0.097 0.28 1 0.747 0.983 
MElP 0.155 0.440 0.902 0.999 
ME2P 0.135 0.38 1 0.849 0.993 

Cochran's Q 131.05* 641.49* 848.25* 124.04* 
* Powers differ significantly among methods (P < 0.05). 

in magnitude. However, this is to be ex- 
pected due to the asymmetry of the distri- 
bution of a correlation coefficient.) 

Methods differed significantly in terms of 
both mean deviation squared (MDS) and 
coefficients of determination (r2) [Fried- 
man's tests for MDS, Tables 2 and 4; two- 
way ANOVAs for r2: P < 0.001 for both 
the unstandardized realized evolutionary 
correlation (UREC) and the standardized 
realized evolutionary correlation (SREC) 
for all input correlations]. TIPS always 
yielded the worst estimate (highest MDS and 
lowest r2) of all three types of correlations, 
whereas FLlG was the best predictor (low- 
est MDS and highest r2) of the input cor- 
relation and of the SREC. With one excep- 
tion, ME 1 G always provided the highest r2 
with the UREC, but the results for MDS 
were inconsistent (Tables 2 and 4). 

Simulations of Punctuational Character 
Change 

Results for significance testing were quite 
different for simulations of punctuational 
change along the phylogeny of Figure 2 with 
an input correlation of zero. FL2G, FL1 P, 
FL2P, MElG, and MElP all yielded ac- 
ceptable Type I error rates, whereas TIPS, 
FLlG, ME2G, and ME2P yielded exces- 
sively high levels (Table 5). As in the sim- 
ulations of gradual change, Cochran's Q test 
demonstrated significant differences in 
power among the methods at all input cor- 

relations except 0.25 (P < 0.0001; results 
not shown). At input correlations of 0.50 
and 0.75, TIPS showed the lowest power, 
ME2G and ME2P showed somewhat higher 
power, and the other methods showed still 
higher power. At an input correlation of 
0.90, all methods showed approximately 
equal power, with the exception that TIPS 
was lower than the rest. 

Results for statistical estimation were 
similar to those obtained with simulations 
of gradual change. Mean deviations were 
small (<0.030), and all methods may be 
considered unbiased estimators of the three 
evolutionary correlations. TIPS again pro- 
vided the worst estimate (the greatest MDS 
and the lowest r2) in estimating all three 
types of correlations. FLlP and MElP, 
which correctly assume change is punctua- 
tional, always gave the best estimates (the 
lowest MDS and the highest r2) of both the 
input correlation and the UREC. More sur- 
prisingly, FL 1 G, which incorrectly assumes 
that change has been gradual, consistently 
provided the best estimate of the SREC (Ta- 
ble 5 for input correlation of zero; other 
results not shown). 

Simulations on Phylogenies with 
Extreme Branch Lengths 

Simulations of the gradual evolution of 
traits along the two phylogenies depicted in 
Figure 3 serve to illustrate the effectiveness 
of methods under different extremes of phy- 
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logenetic nonindependence (power calcu- 
lations were not completed for these sim- 
ulations). (Note that under a punctuational 
model, all three versions of the plethodon- 
tid phylogeny [Figs. 2 and 31 are equivalent.) 

As expected, for data simulated along what 
is almost a binary "star" phylogeny (Fig. 
3a), Type I error rates were acceptable for 
TIPS and for all ofthe methods that assume 
gradual evolution (FLlG, FL,2G7 MElG, 
and ME2G) (Table 6). In contrast, all four 
of the methods that incorrectly assume 
punctuational change (FL 1 P, FL2P, ME 1 P, 
and ME2P) exhibited excessively high Type 
I error rates. Similarly, although values for 
both mean deviation and MDS for all meth- 
ods were quite small (MD < 0.030; MDS 
ranging from 0.006 to 0.108; cf. Tables 2 
and 4), they were lower for TIPS and for 
those methods that assume gradual change 
fhan for those methods that incorrectly as- 
sume punctuational change. r2 values were 
relatively large with the UREC(ranging from 
83 to 92% for TIPS and for all of the meth- 
ods that assume gradual change, but from 
6 1 to 8 1% for all of the methods that assume 
punctuational change), but somewhat 
smaller with the SREC (ranging from 34 
to 49% for methods assuming gradual 
change, with methods assuming punctua- 
tional change again doing somewhat worse). 

On the phylogeny that aggravates the 
problem of nonindependence (Fig. 3b), only 
FLlG provided acceptable Type I errors 
(Table 6). Not surprisingly, all of the other 
methods yielded excessively high Type I er- 
ror rates (Table 6), as they do not adequately 
correct for nonindependence of data points. 
Again, all methods provided unbiased es- 
timators of all three evolutionary correla- 
tions. In this case, however, high MDS 
(ranging from 0.035 to 0.291) and low r2 
values (ranging from 7 to 42%) were ob- 
tained for all methods estimating all three 
evolutionary correlations, with the excep- 
tion of FLlG estimating the input correla- 
tion and the SREC. Thus, increasing phy- 
logenetic nonindependence of species values 
led to the decreased ability of all methods 
except FLlG to estimate any of the three 
evolutionary correlations. Differences 
among the methods were significant (Fried- 
man's tests for MDS, two-way ANOVAs for 
r2; P < 0.05 in all cases; results not shown), 

I 5 O 1  

rnin = -0.825, rnax = +0.861 

Simple Correlation (TIPS) 
V) 

rnin = -0.730, rnax = +0.782 

2 - z -1 -0.8 -0.6 -0 4 -0.2 0 0.2 0.4 0.6 0.8 1 

Felsenstein 1985 (FL1 G) 

I 5 O i  

min = -0.762, max = +0.867 

Minimum Evolution (ME1G) 
FIG. 5. Distribution of correlation coefficients for 

simulations under a gradual model of change, with an 
input correlation of zero, and done on the phylogeny 
depicted in Figure 2. (a) Simple Pearson product-mo- 
ment correlation across 15 tip values ("TIPS'). (b) 
Correlation based on 14 standardized independent 
contrasts (Felsenstein, 1985; "FLlG) .  (c) Pearson 
product-moment correlation based on 28 inferred 
changes between nodes and between nodes and tips 
("ME1 G ) .  With N - 2 = 13 df (where N = the number 
of tips), correlations >0.5 14 in magnitude would be 
judged significant at P < 0.05 for a 2-tailed test. Only 
FLlG yields acceptable Type I error rates; TIPS and 
MElG yield excessively high Type I error rates (see 
Table 2). 
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TABLE 4. Bias (indicated by mean deviation), mean squared error ([mean deviation12), and predictive value (9) of various methods for estimating three types 
of evolutionary correlations. The evolution of two traits was simulated 1,000 times along the phylogeny in Figure 2, under a gradual model of change. Input 
correlation of the bivariate normal distribution of changes varied between 0.25 and 0.90. 

Input correlation 

0.25 0.50 0.75 0.90 

Method Input UREC SREC Input UREC SREC Input UREC SREC Input UREC SREC 

TIPS Dev. x 1000 -7.9 -0.1 -11.9 -22.7Iy2 -8.72 -16 .7 '~~  -19 .8 '~~  -8.7 -11.6 -7.71.2 -2.32 -4.22 
MDS x 1000 117.3 77.2 85.6 82.3 59.1 65.1 32.4 22.0 24.5 6.8 5.4 5.7 
% r2 34.7 27.1 29.1 21.0 31.7 24.0 22.2 17.0 

FLlG Dev. x 1000 -8.8 -0.9 -12.8~ - ~ . 9 ~  5.1 -3.0 -11.2',~ -0.1 -3.0 -5.21,2 0.1 ~ 1 . 7 ~  
MDS x 1000 64.4 42.4 33.6 42.2 32.8 23.7 16.0 10.0 8.2 2.9 2.3 1.7 pl 
% r2 40.8 48.0 33.0 43.8 41.6 48.5 33.2 40.9 .'d 

FL2G Dev. x 1000 - 10.2 -2.4 - 14.2 - 1 7 . 0 ~ ~ ~  -3.0 - 11.0 - 1 6 . 6 ~ ~ ~  -5S2 -8.4' -6.3'9' -1 .0~  -2A2 
MDS x 1000 84.8 39.5 53.4 55.6 28.9 36.4 21.8 10.0 13.9 4.3 2.6 3.1 5 
% r2 53.7 37.2 48.6 34.4 53.5 35.9 41.6 28.4 ? 

FLlP D ~ v .  x 1000 -13.4 -5.6 -17.4' -14.8',~ -0.8 -8.8 -16.51,2 -5.42 - ~ . 4 ' , ~  -6.6',2 - 1 . 3 ~  -3.1' 
MDS x 1000 82.4 36.9 50.9 52.6 26.5 33.5 21.5 9.8 13.4 4.2 2.3 2.9 

z 
O/o r2 55.4 38.4 50.4 36.2 53.7 37.0 44.9 30.7 5 

FL2P Dev. x 1000 -13.7 -5.8 -17.7 -16.11y2 -2.1 -10.2 -17.2],~ -6.12 -9.0',~ -7.0'3~ - 1 . 7 ~  -3S2 '3 
MDS x 1000 87.2 39.0 56.0 56.4 27.9 37.4 22.9 10.7 14.9 4.6 2.6 3.3 -4 

% r2 55.3 35.9 50.7 33.7 52.9 34.5 43.3 28.0 
MElG Dev. x 1000 -11.7 -3.8 -15.7' -17.6' -3.62 - 11.6 -18.6Iy2 -7.5l - 10.4l.~ -7.31,2 -2 .0~  -3.81.2 

S 
MDS x 1000 86.7 38.0 56.0 57.5 28.0 38.2 23.5 10.5 15.4 4.7 2.6 3.4 
% r2 56.2 35.6 51.5 33.6 55.0 34.0 44.7 27.7 

E z u ME2G Dev. x 1000 -14.9 -7.1 -18.9' -22.0l.~ -8 .0~  -16.0' -24.41,2 -13.4',~ -16.3' -10.9l.~ -5.61,2 -7.4',' - 
MDS x 1000 100.4 51.2 72.0 69.7 38.2 49.6 30.7 16.1 22.1 6.4 3.9 4.9 L, 

% r2 49.0 28.6 45.0 28.8 47.7 27.6 39.0 22.5 
7 

MElP Dev. x 1000 -14.5 -6.6 -18.5' -13 .5~  0.5 -7.6 -15.4],~ -4.42 -7.31.2 ~ 6 . 4 ~ 3 ~  -1.12 -2.92 
MDS x 1000 81.4 37.4 49.6 51.2 26.6 32.1 20.9 9.9 12.8 4.1 2.3 2.8 
% r2 54.4 39.3 49.2 37.2 52.2 38.2 43.7 31.7 

ME2P Dev. x 1000 -17.7 -9.8 -21.6 -14.0 0.0 -8.0 -18.4Iy2 -7.42 -10.3'9~ - ~ . 4 ' , ~  -3.12 -4.91,2 
MDS x 1000 89.9 51.4 58.9 56.6 36.3 37.5 24.4 14.3 16.2 5.0 3.2 3.5 
% r2 43.8 34.8 38.3 33.7 41.1 32.9 36.0 28.3 

Friedman's Dev. x 1000 15.63 15 .6~  15.63 7.2 7.1 7.1 18.13 18.13 18.13 49.23 49.13 49.13 
test X2 MDS x 1000 175.7~ 31 1 . 5 ~  447s3 22s3  3 6 6 . ~ ~  440.3~ 18 .9~  362.13 526.S3 49.13 301.4~ 481.3~ 

' 95% CI do not include 0. 
Sign test distributions asymmetrical about 0. 
~ e t h o d ;  differ significantly. 



TABLE 5. Statistical comparison of methods for estimating evolutionary correlations. The evolution of two independent traits was Simulated 1,000 times along 
the phylogeny in Figure 2, under a punctuational model of change (changes drawn from a bivariate normal distribution of random numbers with means and 
covariance equal to zero). Means of simulated values across tips of phylogeny were 33.6 and 5.3; mean variances across tips were 98.6 and 2.7. See Table 2 
heading for further explanation. '2 

Compared to '? 
Unstandardized realized Standardized realized 

Input correlation evolutionary correlation evolutionary correlation 
5 
8 

Percentiles a = 0.05 x2 Mean Mean Mean z 
Type I Type I dev. MDS dev. MDS r2 dev. MDS 

Method 2.5 97.5 2.5-97.5 Variance error error x lo3 x lo3 x lo3 x lo3 (%) x 103 x 103 (%) $ 9- 

TIPS -0.640 0.663 1.303 0.127 0.158 234.06* -5.24 126.7 1.44 93.9 26.1 0.60 113.1 16.9 8 
FLlG -0.582 0.579 1.161 0.086 0.075 29.91* -2.63 85.7 4.05 52.5 39.1 3.21 55.8 38.3 z 
F'L2G -0.512 0.551 1.063 0.077 0.061 4.65 0.24 76.5 6.92 41.4 46.1 6.08 61.1 29.6 
FLlP -0.498 0.522 1.020 0.072 0.050 3.93 0.41 72.1 7.09 36.0 50.3 6.25 58.3 30.0 
FL2P -0.501 0.537 1.038 0.074 0.055 3.21 0.19 73.6 6.87 37.6 49.1 6.03 61.8 27.7 

$ 0 

MElG -0.501 0.534 1.035 0.074 0.058 1.22 1.37 74.0 8.05 37.9 48.9 7.21 59.7 29.7 '$ 
ME2G -0.559 0.581 1.140 0.089 0.088 26.92* 1.72 88.7 8.40 53.4 40.0 7.56 75.4 24.1 0 
MElP -0.503 0.524 1.027 0.072 0.052 5.47 0.43 72.3 7.11 35.9 50.4 6.27 58.1 30.2 
ME2P -0.576 0.578 1.154 0.090 0.084 131.64* -0.73 90.1 5.95 54.0 40.2 5.11 75.8 24.4 
Friedman's 

i 
0 

test X2 6.42l 219.02 6.44' 440.0~ 6.42l 252.12 3 
UREC -0.388 0.396 0.784 0.039 z 
SREC -0.447 0.461 0.908 0.056 

P < 0.05. ' 95% confidence intervals for all mean deviations in these analyses included zero. ' MDS differs significantly among methods. 
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and were due almost entirely to the effect 
of FLlG, which provided much better es- 
timates of the input correlation and the 
SREC (lower MDS and higher r2), but a 
much worse estimate of the UREC (higher 
MDS and lower r2), than did any of the other 
methods (results not shown). 
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Robustness with Inaccurate 
Branch Lengths 

To test the robustness of methods given 
extremely inaccurate information as to 
branch lengths, data simulated under a 
gradual model of change along the nearly 
independent phylogeny (Fig. 3a) were ana- 
lyzed as if evolution had occurred along the 
extremely nonindependent phylogeny (Fig. 
3b), and vice versa. The same sets of sim- 
ulated data as were used in the previous 
section (Simulations on Phylogenies with 
Extreme Branch Lengths) were used in these 
analyses to allow for comparison of results 
based solely on misinformation concerning 
branch lengths. 

Simulated Along Binary Star Phylogeny, 
Analyzed as If Nonindependent Phyloge- 
ny. -Not surprisingly, only TIPS and FL2G 
provided acceptable Type I errors (Table 6). 
(TIPS is unaffected by inaccurate branch 
lengths, whereas FL2G uses branch lengths 
only in calculations of nodes, and not for 
standardization of the contrasts.) Although 
mean deviations were again small, estima- 
tion of all three evolutionary correlations 
(as measured by both MDS and r2) by all 
methods was worse than when using correct 
branch lengths in calculations. FLlG 
showed the largest increase in MDS and the 
largest decrease in r2, but these changes only 
served to bring it within the range of the 
other methods. TIPS yielded the highest 
predictive power for both the UREC (r2 = 

91%) and the SREC (48%). Differences 
among the other methods were quite small, 
with r2 ranging from 62% (ME2P) to 83% 
(FL2G) for the UREC, and from 34% 
(ME2P) to 45% (FL2G) for the SREC. 

Simulated Along Nonindependent Phy- 
logeny, Analyzed as If Binary Star Phylog- 
eny. -None of the methods provided ac- 
ceptable Type I error rates (Table 6). 
However, all methods once again provided 
unbiased estimators of the input correla- 

v; 

8 
v 

: 
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tion, the UREC, and the SREC. MDS again 
increased (ranging from 0.169 to 0.272) in 
comparison with analyses performed with 
accurate branch length information, with 
FLl G showing the largest increases (for es- 
timation of the input correlation, 0.073 ver- 
sus 0.258; for estimation ofthe SREC, 0.035 
versus 0.234). FLlG also showed the largest 
changes in r2 values with both the UREC 
and the SREC, decreasing from 5 1 to 4 1 % 
with the SRECand actually increasing from 
7 to 4 1 O/o with the UREC. r2 values with the 
SREC were quite low in all cases (< 14O/o), 
whereas r2 values with the UREC (with the 
exception of FL1 G) changed little from those 
obtained for data that were analyzed with 
accurate information (range = 4043%). 

Simulations on Altered Topologies 
Gradual Model of Change. -For the 

comb-like phylogeny of Figure 4b, both 
FLlG and FL2G yielded correct Type I er- 
ror rates (Table 6). For gradual evolution 
along the symmetrical phylogeny of Figure 
4a only FL2G and FL2P yielded acceptable 
tests of. significance (Table 6), but FL1 G, 
FL1 P, ME 1 G, and ME 1 P all provided mar- 
ginally acceptable Type I error rates (x2 = 
13 .O, 1 3.1, 14.7, and 14.7, respectively, ver- 
sus critical value of 12.6). Thus, considering 
all results for gradual simulations, only 
FLlG seems to offer consistently accurate 
significance tests. Other methods, except 
ME2, sometimes may yield correct Type I 
error rates, as compared with critical values 
for a standard Pearson's r with N - 2 dJ] 
but they cannot be relied upon to do so 
(Tables 2 and 6). 

Punctuational Model of Change. - Sur- 
prisingly, FL1 P, FL2P, ME lG, and ME1 P 
all yielded acceptable Type I error rates for 
simulations of punctuational change on the 
two phylogenies of Figure 4 (as they did for 
simulations of punctuational change on the 
phylogeny of Fig. 2). ME2G yielded ac- 
ceptable Type I error rates only on the comb- 
like phylogeny of Figure 4b, whereas FLlG 
and FL2G (which incorrectly assume change 
has been gradual) only yielded correct Type 
I error rates on the symmetrical phylogeny 
of Figure 4a. TIPS and ME2P again yielded 
excessively high Type I error rates on both 
phylogenies (Table 6). 

Not attempting to take phylogeny into ac- 
count is statistically unacceptable. As pre- 
dicted by a number of authors, standard 
statistical analyses that ignore phylogeny 
entirely (as in TIPS) yield inflated Type I 
error rates, low power, and relatively in- 
accurate estimates of evolutionary correla- 
tions (Fig. 1). Any of the other methods we 
have compared (Table l), all of which make 
some attempt to correct for phylogenetic ef- 
fects, perform better than does TIPS (unless 
the actual phylogeny is close to a "star" [e.g., 
Fig. 3a], in which case the methods perform 
equally well). Even when extremely inac- 
curate information concerning model of 
change (gradual vs. punctuational) or rela- 
tive branch lengths is used, other methods 
perform no worse than does TIPS. (The sin- 
gle exception occurs when the actual phy- 
logeny is close to a star, but phylogenetic 
information is extremely inaccurate and 
claims that species are very nonindependent 
of each other. In practice, having branch 
lengths with such an extreme degree of in- 
accuracy seems quite unlikely.) 

A second conclusion from our simula- 
tions is that ME2, the minimum evolution 
method that uses only the changes between 
most recent nodes and tips (and which is 
most similar to that used by Huey and Ben- 
nett [1987]), never performs better and of- 
ten performs considerably worse than does 
ME 1, which uses changes between inferred 
nodes as well as changes between nodes and 
tips. Thus, if one of these minimum evo- 
lution methods is to be used, it should be 
ME1, not ME2. We conclude that neither 
TIPS nor ME2 should be seriously consid- 
ered for analyzing comparative data. 

Signijicance Testing. -We demonstrate 
that any of the available methods may be 
used to obtain accurate Type I error rates, 
if hypothesis testing is conducted against an 
empirical null distribution created through 
computer simulation along the phylogeny 
of interest and under an appropriate model 
of change. This may be desirable if a method 
is preferred for other reasons (e.g., estima- 
tion) or if complete phylogenetic informa- 
tion is not available (or considered unreli- 
able). Otherwise, Felsenstein's (1985) 
method of standardized contrasts (FL1) is 
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the only method tested that consistently 
provided acceptable Type I error rates, giv- 
en an accurate phylogeny and model of 
character change. Under a punctuational 
model of evolution, FL2P, MElG, and 
ME 1 P also yielded correct Type I error rates 
(Tables 5 and 6), even when topology was 
varied drastically (cf. Figs. 3 and 5). 

Power. -For data simulated under a 
gradual model of change, FL1 clearly had 
higher power than did any other method 
(Table 3). TIPS and ME2G (neither of which 
is recommended) had the lowest power; 
other methods were intermediate. Interest- 
ingly, ME 1 P, which (incorrectly) assumes a 
punctuational model of change, showed 
higher power (lower Type I1 error) than did 
ME 1 G. 

For data simulated under a punctuational 
model of change, TIPS again had the lowest 
power, both versions of ME2 had inter- 
mediate power, and all other methods had 
similar, higher power. There seemed to be 
little difference in power between those 
methods that assume gradual change (in- 
correctly) and those that assume punctua- 
tional change. 

Statistical Estimation. -We compared 
methods in terms of their abilities to esti- 
mate the input correlation and two types of 
realized evolutionary correlation (UREC 
and SREC; see Methods and Fig. 1). Im- 
portantly, all of the methods we compared 
yield what may be considered unbiased es- 
timates of all three statistics (mean devia- 
tion < 0.03 in all cases). Methods varied a 
great deal, however, in terms of both mean 
deviation squared (for all three evolutionary 
correlations) and coefficients of determi- 
nation (with the two forms of RECs). For 
simulations along the phylogeny of Figure 
2, TIPS consistently provided the worst es- 
timate of all three evolutionary correlations 
at all input correlations and for simulations 
under both gradual and punctuational mod- 
els of change (Tables 2, 4, 5). 

Felsenstein's (1985) method was intend- 
ed to estimate the input correlation and, not 
surprisingly, FL1 consistently showed the 
lowest MDS in estimating it. In punctua- 
tional simulations, MElP did as well as 
FLlP (Table 5). FLl was highly subject to 
inaccuracy of information concerning both 
model of change and relative branch lengths 

(Table 6). However, inaccurate information 
(in terms either of model of change or of 
branch lengths) only made FL1 perform as 
well or as poorly as did the other methods 
in estimating the input correlation. One thus 
has little to lose by choosing FL1 to estimate 
the input correlation. FLlG also provided 
the best estimate of the standardized real- 
ized evolutionary correlation (SREC), un- 
der all conditions, regardless of the model 
of change. 

The unstandardized realized evolution- 
ary correlation (UREC), however, was best 
estimated by ME1 in both gradual and 
punctuational simulations. Thus, ME 1 
seems best suited for the type of evolution- 
ary reconstructions desired by Huey and 
Bennett (1 987). FLl yielded an equally good 
estimate of the UREC in simulations under 
a punctuational model of change (FLIP), 
but was a poor estimator of the UREC in 
simulations under a gradual model of change 
(FLlG). 

The absolute predictive ability of the var- 
ious methods for either form of realized 
evolutionary correlation varied depending 
on the phylogeny and on the model of evo- 
lutionary change. Coefficients of determi- 
nation with the SREC were generally lower 
than with the UREC for all methods except 
FLlG. In general, 1.2s always were less than 
60% (Tables 2,4,5; other results not shown). 
Only for data simulated gradually along a 
binary "star" phylogeny (Fig. 4a) did pre- 
dictive ability become quite high for the 
UREC (+ ranged from 76 to 92%, except r2 
= 62% for ME2P), although 13s for the SREC 
still ranged from only 41 to 49% (except 1.2 
= 34% for ME2P). The foregoing would not 
seem to represent very good predictive abil- 
ity in any absolute sense, although 1.2 would 
probably tend to be higher with larger sam- 
ple sizes and/or phenotypic data showing a 
greater range. 

Unanswered Questions. -We certainly 
have not investigated all factors that may 
lead to variation among methods in statis- 
tical performance. Our simulations envi- 
sion evolution as a nondirectional process 
(a type of "random walk" [or diffusion, in 
continuous time]) of consistently gradual 
(stochastically constant average rate) or 
punctuational change, with a constant re- 
lationship between two traits. It would be 
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possible, however, to vary the model ofevo- 
lutionary process in a number of ways that 
might affect the performance of different 
methods. 

A bivariate normal probability distribu- 
tion with means of zero would be charac- 
teristic of evolutionary change occurring as 
by Brownian motion, which "corresponds 
well to what we expect if genetic drift is the 
mechanism of character change" (Felsen- 
stein, 1988 p. 464). As genetic drift is not 
the only mechanism of character change, it 
would be of obvious interest to explore the 
consequences of choosing changes from a 
log-normal or other probability distribu- 
tion, rather than from a normal. Variable 
rates of evolution could be modeled by al- 
lowing the variance of the distribution of 
changes for either or both traits to change 
during the course of simulations, either ran- 
domly or systematically, similar to chang- 
ing the "step variance" of a random walk 
(Bookstein, 1987, 1988). 

The evolutionary relationship between 
characters may change over time (Harvey 
and Mace, 1982; Felsenstein, 1985 p. 14; 
Huey, 1987; Bell, 1989; but see Page1 and 
Harvey, 1988b regarding potential statisti- 
cal artifacts). This could be due to changing 
genetic correlations or to changing patterns 
of selection, for example. Thus, altering the 
covariance (input correlation of Fig. 1) of 
the bivariate distribution of changes within 
a single simulation would be of considerable 
interest. It also would be possible to allow 
the phylogeny itself to vary randomly from 
simulation to simulation (cf. Raup and 
Gould, 1974; Fiala and Sokal, 1985). We 
did not do this simply to avoid confounding 
effects of variation in the phylogeny per se 
(topology, distribution of branch lengths) 
with those due to model of evolutionary 
change, magnitude of input correlation, etc. 

Finally, the statistical and biological un- 
derpinnings of the alternative evolutionary 
correlations (Fig. I) deserve further study. 
Various authors clearly seem interested in 
different correlations, but the distinctions 
we note have not previously been explicat- 
ed. Perhaps the input correlation will be 
most useful for attempting to uncover gen- 
eral biological "laws" that apply to large 
groups of organisms; for example, attempt- 
ing to infer what happened in all mammals 

from studies of a single family. Realized 
evolutionary correlations, on the other hand, 
may be most appropriate for those who are 
interested in the evolution of traits in a re- 
stricted study group, such as a particular 
family of mammals, but do not necessarily 
wish to generalize to all mammals. Another 
possibility, as suggested by J. M. Cheverud 
(pers. comm.), is that the input correlation 
is closer to microevolutionary processes, 
whereas the realized evolutionary correla- 
tions better estimate macroevolutionary 
patterns. In any case, we have shown that 
analytical methods do in fact differ signifi- 
cantly with regard to how well they estimate 
the input correlation and the two forms of 
realized evolutionary correlation, one of 
which (the SREC) gives greater weight to 
changes occurring over short time spans. 

Recommendations. -Choice of a method 
in a comparative study will depend on the 
availability of phylogenetic information and 
on the question of primary interest. Phy- 
logenetic information, including branch 
lengths of various sorts, is becoming avail- 
able at an increasing rate. So too are alter- 
native comparative methods. We have not 
compared the statistical properties of all 
available methods, although several of the 
alternatives are quite similar to those we 
have compared (see Harvey and Page1 [ 1 99 11 
for a thorough review of currently available 
methods). All of the programs used herein 
are available from the authors on request, 
and may be used to compare new methods 
on any phylogeny. We emphasize that our 
results are based on simulations run on a 
limited number of phylogenies. We there- 
fore recommend that future comparative 
studies might prudently include at least lim- 
ited simulations in order to compare meth- 
ods on the relevant phylogeny. 

1. No phylogenetic information available. 
Although phylogenies may be fundamental 
to comparative biology (Felsenstein, 1985), 
they are simply unavailable for many groups 
of organisms. One might, however, be will- 
ing to construct a topology based solely or 
largely on the available taxonomy, with, for 
example, one node on an unresolved poly- 
tomy for each genus, family, etc., as sug- 
gested by Burt (1989), Grafen (1989), and 
others. This is a reasonable first step, as- 
suming that taxonomic groups are mono- 
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phyletic and that groups at a given taxo- 
nomic level are of comparable age. From 
this point, both Grafen (1989) and Harvey 
and Page1 (1 99 1) offer modifications of Fel- 
senstein's (1985) method that can be ap- 
plied with partially unresolved topologies. 
Alternatively, given a completely resolved 
topology, choice of analytical method will 
depend on whether information concerning 
branch lengths is available. 

2. Phylogenetic topology but no branch 
lengths available. It is important to realize 
that all of the methods we have considered 
(except TIPS) require knowledge of branch 
lengths, in units of expected variance of 
change. For example, the minimum evo- 
lution methods we have outlined require 
branch lengths for computing nodes and for 
simulation of appropriate null distributions 
for significance testing. 

One way to "avoid" the need for branch 
lengths in computations is to assume they 
are all equal, which is equivalent to assum- 
ing that character change has been punc- 
tuational (e.g., Huey and Bennett, 1987) and 
that all speciation events are known and 
have been counted. Given these assump- 
tions, then either Felsenstein's (1 985) meth- 
od (FLIP), FL2P, or a minimum evolution 
method (e.g., MElP) can be applied. All of 
these methods gave acceptable Type I error 
rates for all of our punctuational simula- 
tions (Tables 5 and 6), although this should 
be verified for phylogenies with other than 
15 species. In terms of both power and es- 
timation (for all three evolutionary corre- 
lations), FLIP, FL2P, and ME1 P are very 
similar (Table 5; other results not shown). 

Several alternatives for estimating branch 
lengths are available. At the very least, one 
might use a taxonomically based estimate 
of branch lengths similar to that suggested 
by Cheverud et al's. (1985) Figure 1, al- 
though this procedure is arbitrary (cf. Git- 
tleman and Kot, 1990). Time, which may 
be estimated from molecular clock and/or 
paleontological information, is an appro- 
priate estimate of expected variance of 
change if character change is known to be 
gradual (Brownian motion). Another pos- 
sibility would be to use overall rates of DNA 
sequence change to estimate branch lengths. 
Such information might be obtained from 

actual sequence data or from single copy 
nuclear DNA-DNA hybridization studies. 
Although branch lengths could be estimated 
with algorithms that make the restrictive 
assumption of equal rates, using a pairwise 
tree-construction algorithm that allows rates 
to differ among branches would be prefer- 
able (cf. Springer and Krajewski, 1989). 
Thus, if a topology is available from other 
information (e.g., a cladistic analysis of 
morphological characters), one might use 
information on DNA sequence divergence 
to estimate branch lengths only. 

It is also possible to use the characters 
under study to infer branch lengths. Grafen 
(1989) offers a maximum likelihood tech- 
nique for doing so, which he presents in the 
context of standardizing Felsenstein's (1 985) 
independent contrasts. Alternatively, Har- 
vey and Page1 (1 99 1) suggest not standard- 
izing contrasts but instead using residual 
analysis and remedial measures such as 
weighted regression, if necessary. An im- 
portant area for future research will be de- 
veloping robust techniques for estimating 
branch lengths in units of expected variance 
of change. Also of use would be developing 
techniques for inferring, solely from neon- 
tological data, whether the characters of in- 
terest have evolved in a gradual or in a 
punctuational fashion (cf. Douglas and Av- 
ise, 1982; Burt, 1989; Lemen and Freeman, 
1989; Mindell et al., 1989). 

3. Phylogenetic topology and branch 
lengths available. If the correct phylogenetic 
topology and branch lengths are available, 
then Felsenstein's (1 985) method (FL1 G) 
should be applied to obtain the most ac- 
ceptable significance testing, highest power, 
and best estimates of either the input cor- 
relation or the standardized realized evo- 
lutionary correlation. For the best estimate 
of the unstandardized realized evolutionary 
correlation, however, ME 1 G and FL2G 
should be applied, but these must be sig- 
nificance tested against simulated null dis- 
tributions. This requires specifying the ap- 
propriate model of character change, but 
this is known, in effect, if branch lengths (in 
expected variance of change) are available. 

4. Two characters strongly correlated with 
a third. One final suggestion concerns the 
analysis of two traits that are themselves 
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strongly correlated with a third. Obvious 
examples include such characters as brain 
size or metabolic rate, which scale allo- 
metrically with body mass. A common ap- 
proach is to regress both characters on body 
mass, compute residuals, then look for cor- 
relations between these residuals (e.g., Har- 
vey and Mace, 1982; Garland and Huey, 
1987; Garland et al., 1988). Such residuals 
may be analyzed by techniques that take 
phylogeny into account (e.g., Bell, 1989). 
However, phylogeny should be taken into 
account during creation of the residuals. One 
could, for example, use Felsenstein's meth- 
od (FL1) to compute standardized indepen- 
dent contrasts for metabolic rate, brain size, 
and body size. Alternatively, a minimum 
evolution method (ME1) might be used to 
compute inferred changes for these traits 
along a phylogeny (e.g., Losos, 1990). These 
independent contrasts or inferred changes 
could then be used to compute separate re- 
gressions of metabolic rate on body size and 
of brain size on body size. Residuals from 
these two regressions should be free of the 
confounding effects of both body size and 
phylogeny, and could be tested for corre- 
lation using standard procedures (in the case 
of FL1) or by reference to computer-sim- 
ulated null distributions (in the case of ME 1). 
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EVOLUTION OF CONTINUOUS CHARACTERS 

APPENDIX A 

Character A: 15 9 18 35 28 

Character 6: 1 2 3 4 5  

For purposes of illustration, we have calculated cor- 
relation coefficients using the topology, branch lengths, 
and tip data depicted above. We have also calculated 
correlations for the phylogeny and data on genome size 
and growth rate given in Sessions and Larson's (1987) 
Table 2 for 15 species. 

Correlation coemcients 

Method Sam~le Sessions and Larson 

TIPS 
FLlG 
FL2G 
FLlP 
FL2P 
MElG 
ME2G 
MElP 
ME2P 


