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ABSTRACT

Flying animals may experience a selective constraint on gut
volume because the energetic cost of flight increases and ma-
neuverability decreases with greater digesta load. The small in-
testine is the primary site of absorption of most nutrients (e.g.,
carbohydrates, proteins, fat) in both birds and mammals.
Therefore, we used a phylogenetically informed approach to
compare small intestine morphometric measurements of birds
with those of nonflying mammals and to test for effects of diet
within each clade. We also compared the fit of nonphylogenetic
and phylogenetic models to test for phylogenetic signal after
accounting for effects of body mass, clade, and/or diet. We
provide a new MATLAB program (Regressionv2.m) that facil-
itates a flexible model-fitting approach in comparative studies.
As compared with nonflying mammals, birds had 51% less
nominal small intestine surface area (area of a smooth bore
tube) and 32% less volume. For animals !365 g in body mass,
birds also had significantly shorter small intestines (20%–33%
shorter, depending on body mass). Diet was also a significant
factor explaining variation in small intestine nominal surface
area of both birds and nonflying mammals, small intestine mass
of mammals, and small intestine volume of both birds and
nonflying mammals. On the basis of the phylogenetic trees used
in our analyses, small intestine length and nominal surface area

exhibited statistically significant phylogenetic signal in birds but
not in mammals. Thus, for birds, related species tended to be
similar in small intestine length and nominal surface area, even
after accounting for relations with body mass and diet. A re-
duced small intestine in birds may decrease the capacity for
breakdown and active absorption of nutrients. Birds do not
seem to compensate for reduced digestive and absorptive ca-
pacity via a longer gut retention time of food, but we found
some evidence that birds have an increased mucosal surface
area via a greater villus area, although not enough to compen-
sate for reduced nominal surface area. We predict that without
increased rate of enzyme hydrolysis and/or mediated transport
and without increased passive absorption of water-soluble nu-
trients, birds may operate with a reduced digestive capacity,
compared with that of nonflying mammals, to meet an increase
in metabolic needs (i.e., a reduced spare capacity).

Introduction

In birds and mammals, the small intestine is the primary site
of enzymatic breakdown and absorption of carbohydrates,
amino acids, and fatty acids (excluding short-chain fatty acids).
Small intestine brush border enzymes (e.g., disaccharidases,
peptidases) that break down nutrient polymers and nutrient
transporters (e.g., the Na�-d-glucose transporter) that absorb
subsequent monomers are in the greatest quantity in the small
intestine (Southgate 1995). Most of the free mono- and disac-
charides and amino acids are completely absorbed in the small
intestine (Riesenfeld et al. 1980; Southgate 1995; Klasing 1998),
with the exception of those species that lack specific enzymes
(e.g., some passerine species lack sucrase [Martinez del Rio
1990], and pinnipeds lack lactase [Klurfeld 1999]). Further-
more, the small intestine is the major site of absorption of such
minerals and electrolytes as calcium, phosphate, and potassium,
as well as such vitamins as B6 (Levin 1984; Heard and Annison
1986; Van Der Klis et al. 1990).

A larger small intestine volume or nominal surface area (the
area of a smooth bore tube) presumably allows more area over
which these nutrients can be digested and absorbed. In birds
and mammals, digestive adjustments to higher feeding rates
almost always include an increase in gut size and, thus, an
increase in digestive enzymes and nutrient transporters and
associated breakdown and absorption of nutrients (Karasov and
McWilliams 2005). For birds that fly, however, the size of the
digestive tract and, consequently, the digesta it carries may be
minimized because the cost of flight increases with load carried
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and takeoff and maneuverability can be impaired at heavier
masses (Guillemette 1994; Norberg 1995; Nudds and Bryant
2002). Thus, nominal surface area, a function of circumference
that also corresponds to gut volume, may be reduced in volant
species because of selection pressure. Ideally, this hypothesis
would be tested by comparing flying birds with flightless birds.
However, there are relatively few extant flightless birds, those
that do exist are mainly large and/or endangered, and very little
information detailing their gastrointestinal tracts is available.
Therefore, we ask whether flying birds have reduced small in-
testines compared with those of comparably sized nonflying
mammals. A complementary comparison of flying and non-
flying mammals is considered elsewhere (Caviedes-Vidal et al.
2007), and we address emerging patterns in volant mammals
in relation to our study in “Discussion.”

Anecdotal evidence suggests that birds tend to have intestines
relatively shorter than those of mammals (McClelland 1979),
and shorter intestines would be associated with relatively less
nominal surface area and volume. Studies have compared gas-
trointestinal morphology within primates; domesticated and
small mammals; and gallinaceous, passerine, North American,
and Mediterranean birds (Leopold 1953; Chivers and Hladik
1980; Herrera 1984; Ricklefs 1996; Snipes 1997; DeGolier et al.
1999). A broad comparison of small intestine length, volume,
and area between birds and nonflying mammals has never been
made.

We surveyed the literature for gastrointestinal morphometric
measurements (e.g., small intestine length, nominal surface
area, and volume; supplemental data are available as an Excel
file or a tab-delimited ASCII file; sources for the supplemental
data are listed in App. B). We used body mass as a covariate
in statistical analyses because such morphometric traits as sur-
face area are strongly positively correlated with body mass when
a broad range of body sizes are considered (McMahon and
Bonner 1983). We also tested for effects of diet because previous
studies have shown that the overall size of the gut varies in
relation to diet (Leopold 1953; Ziswiler and Farner 1972; Wals-
berg 1975; Ankney 1977; Pulliainen et al. 1981; Herrera 1984;
Barnes and Thomas 1987; Moss 1989; Karasov 1990; Richard-
son and Wooller 1990; Ricklefs 1996). We applied both con-
ventional and phylogenetically based models because not ac-
counting for hierarchical evolutionary relationships among
species potentially violates statistical assumptions of conven-
tional statistical methods, such as residuals from a regression
model being independent and identically distributed (Felsen-
stein 1985; Garland and Adolph 1994; Garland et al. 2005).
Violation of assumptions can lead to inflated Type I error rates
(claiming statistical significance too often) and estimates of
parameters (e.g., allometric slopes) that are not minimum var-
iance. In addition to testing for differences between the bird
lineages and the mammal lineages, we tested for generalized
phylogenetic signal (Blomberg et al. 2003) by the use of max-
imum likelihood techniques that compare the fit of a contin-
uum of models ranging between one that assumes a star phy-
logeny (i.e., a conventional, nonphylogenetic analysis) and one

that assumes a specified hierarchical phylogenetic tree with a
particular set of branch lengths (Grafen 1989; Freckleton et al.
2002; Chown et al. 2007; Duncan et al. 2007). This approach
allows for the possibility that for a given analysis, a star phy-
logeny may provide a better fit to the data. To accomplish these
analyses, we developed a new MATLAB program (Regres-
sionv2.m) that is available on request.

Material and Methods

We searched the literature for gastrointestinal morphometric
data on birds and nonflying mammals, including searches
within Biological Abstracts and Web of Knowledge databases
(all years) for keywords such as “intestine,” “morphology,”
“gastrointestinal,” and “surface area.” We incorporated only
measurements in our database for which there was a corre-
sponding body mass included in the publication (Excel file;
ASCII file; App. B; species). Species were classified byn p 493
diet (carnivore [1], omnivore [2], herbivore [3], nectarivore
[4], or frugivore [5]). Whenever possible, species were classified
into diet categories based on the publication from which in-
testinal measurements were acquired. A species was considered
a carnivore if it was noted to consume arthropods and was
considered an omnivore if it was noted to consume both ar-
thropods and plant matter. Categorizing species into distinct
diet guilds is difficult; while our method allowed the most
consistent and unbiased means of diet categorization, it did
not include anecdotal records of occasional foods that may have
been consumed by particular individuals within species. For
example, the waxwing Bombycilla cedrorum is classified as a
frugivore because it consumed mixed fruits according to the
source from which most of the morphometric measurements
were taken. Bombycilla garrulous, on the other hand, is cate-
gorized as an omnivore because the source of morphometric
measurements notes that this species feeds on berries, insects,
and seeds.

Our dependent variables included small intestine length
(from stomach to cecum; cm), nominal surface area (the area
of an equivalent smooth bore tube; cm2), small intestine volume
(cm3), wet mass (g), and villus amplification ratio (ratio of
villus area to nominal area). We also recorded measurements
of hindgut dimensions when available. Nominal surface area,
along with length, defines the intestine volume and partly de-
fines the intestinal surface area for breakdown and absorption.
The surface area is further increased by villi and microvilli (the
latter not accounted for in this study because of lack of data
in the literature), but most measures of intestinal breakdown
and absorption in the literature are expressed per unit nominal
area and reflect increases in activity imparted by surface mag-
nification from villi and microvilli.

Studies have used various techniques to quantify the villus
amplification ratio (the ratio of villus area to nominal area,
also known as the mucosal-to-serosal amplification ratio; Harris
et al. 1988), the histological surface magnification ratio (Ki-
sielinski et al. 2002), or the surface enlargement factor (Snipes
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Table 1: Allometric equations for ln small intestine morphometric traits in relation to ln body mass

Trait N

OLS RegOU

Y-Intercept (SE) Slope (SE) r 2

ln

Likelihood AIC Y-Intercept (SE) Slope (SE) r 2

ln

Likelihood AIC d

Length (cm):

Bird 220 1.117 (.0654) .520 (.0126) .886 �67.8 141.7 1.397 (.1018) .468 (.0169) .779 �25.2 58.4 .621

Mammal 64 2.047 (.0924) .390 (.0144) .922 �11.3 28.6 2.010 (.1085) .395 (.0160) .908 �9.9 27.9 .191

Nominal surface

area (cm2):

Bird 86 �.029 (.0833) .757 (.0225) .931 �20.0 46.0 .070 (.1042) .733 (.0255) .908 �17.0 42.1 .243

Mammal 114 .773 (.1173) .704 (.0155) .948 �68.3 142.7 .785 (.1305) .703 (.0172) .937 �66.9 141.8 .125

Wet mass (g):

Bird 34 �2.705 (.2816) .838 (.0451) .915 �20.9 47.7 �2.928 (.3690) .844 (.0608) .858 �18.3 44.7 .747

Mammal 60 �.345 (.270) .926 (.0319) .935 �41.0 88.1 �3.452 (.2983) .926 (.0351) .923 �37.2 82.3 .386

Volume (cm3):

Bird 65 �3.062 (.1795) .887 (.0416) .878 �52.8 111.6 �3.100 (.2042) .891 (.0455) .859 �51.3 110.6 .212

Mammal 91 �2.744 (.2011) .968 (.0265) .938 �82.9 171.9 �2.714 (.2102) .964 (.0276) .932 �82.8 173.6 .375

Note. OLS p ordinary least squares; RegOU p phylogenetic regression with Ornstein-Uhlenbeck process; AIC p Akaike Information Criterion. Values for

r 2 from OLS and RegOU models are not comparable; d is the restricted maximum likelihood estimate of the Ornstein-Uhlenbeck transformation parameter.

Figure 1. Small intestine length (cm) versus body mass (g) in birds
and nonflying mammals on a double-logarithmic scale. Nonflying
mammal species are depicted by crosses and solid line (regression
statistics in Table 1), and birds are depicted by circles and dashed line.
Birds !365 g had small intestines significantly shorter than those of
mammals (bird slope, ; mammal slope,0.468 � 0.0169 0.395 �

). See text for statistical comparisons.0.0160

1997). Results have yielded different estimates for the same
species, depending on the method used. For example, there
were significantly different estimates for villus magnification in
laboratory rats, depending on whether the Fisher-Parsons
(1950) method or the Harris method (Harris et al. 1988) was
used (Kisielinski et al. 2002). Consequently, in order to deter-
mine whether the allometric slopes for the villus area and the
nominal surface area versus body mass were parallel and
whether the villus amplification scaled with body mass, we used
data from Ricklefs (1996; for birds) and Snipes (1997; for mam-
mals) so that consistent methodology was used within taxa.
Despite differences in methodology, we used the villus ampli-
fication from these two studies as well as from the whole data
set to test whether there was a significant difference in villus
amplification between birds and mammals.

We constructed a composite phylogeny including all 493
species of birds and nonflying mammals using Mesquite (ver.
1.12; http://mesquiteproject.org). Tree topology was based on
existing published phylogenetic hypotheses (for complete list
of sources, see App. C). Although we strove for a fully bifur-
cating arrangement, 68 polytomies remained in the final tree
because of either incomplete phylogenetic information or un-
resolved polytomies in published trees. Branch lengths were
specified by Pagel’s (1992) arbitrary method.

The Mesquite tree was then exported to a PDI file. This file
was read into the DOS PDDIST program (Garland and Ives
2000; http://biology.ucr.edu/people/faculty/Garland/PDAP.html),
and a phylogenetic variance-covariance matrix was output.

For all statistical analyses, both the response variable and
body mass were natural-log transformed, and the raw data were
graphically represented with log10 axes to portray the data
clearly. The new MATLAB program Regressionv2.m (see App.
A) was then used to implement linear statistical models via

both ordinary (i.e., nonphylogenetic) least squares (OLS) and
phylogenetic generalized least squares (PGLS) regressions (Gar-
land and Ives 2000; Garland et al. 2005). For the OLS analyses,
results were confirmed with SPSS, version 11.5. OLS regression
assumes that the unexplained residual variation is independent
among species, whereas PGLS assumes that residual variation
among species is correlated, with the correlation given by a
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Table 2: Statistical tests of the effect of clade (bird vs. mammal) on the allometric relation between small intestine length and
body mass ( )N p 284

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �104.8 215.7
PGLS �67.9a 141.8
RegOU .613 �44.9a 97.8

ANCOVA with Same Slope but Different Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 1) Partial F for Clade

P for Partial F
(df p 1, 281)

OLS �100.0 207.9 9.75 .0018 9.81 .0019
PGLS �67.8a 143.6 .25 .6179 .25 .6201
RegOU .599 �42.9a 95.8 4.06 .0439 3.91 .0488

ANCOVA with Different Slopes (Clade # Mass) and Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 1)

Partial F for Clade
and Clade # Mass
Interaction

P for Partial F
(df p 2, 280)

OLS �79.9 169.9 40.02 .0001b 26.81 2�11c

PGLS �66.3a 142.6 2.98 .0843b 1.60 .2068c

RegOU .551 �38.5a 89.1d 8.68 .0032b 6.78 .0013c

Note. Akaike Information Criterion (AIC; smaller is better) is computed as (�2 # ln maximum likelihood) � (2 # no. parameters). d is the restricted

maximum likelihood estimate of the Ornstein-Uhlenbeck (OU) transformation parameter. For maximum likelihood and AIC, maximum likelihood estimates of

d were used but are not reported. Within each subtable, the following three linear regression models are compared: ordinary (nonphylogenetic) least squares

(OLS), phylogenetic generalized least squares (PGLS), and regression in which the residual variation is modeled as an OU process (RegOU) along the specified

phylogenetic tree.
a On the basis of likelihood ratio tests (LRTs), the PGLS model is statistically significantly better than the OLS model, and the RegOU model is statistically

significantly better than the PGLS model (and the OLS model).
b LRT comparing model with different slopes and intercepts with model that has parallel slopes.
c Partial F-test comparing model with different slopes and intercepts with simple allometry model.
d Best model by criterion of lowest AIC. See Table 1 for separate allometric equations for birds and mammals.

process that acts like Brownian motion evolution along the
nominal, or starter, phylogenetic tree. When the PGLS model
fits the data better than the OLS model (as judged by the Akaike
Information Criterion [AIC]), then the residual variation in
the dependent variable is said to exhibit phylogenetic signal
(Freckleton et al. 2002; Blomberg et al. 2003), after accounting
for effects of body mass and any other factors in the model
(e.g., clade, diet).

Because the foregoing analyses assume either no (OLS) or
relatively strong (PGLS) phylogenetic signal, we also performed
an analysis in which the strength of phylogenetic signal in the
residual variation was estimated simultaneously with the re-
gression coefficients (e.g., see Grafen 1989; Freckleton et al.
2002; Chown et al. 2007; Duncan et al. 2007). For this, we
assumed that the correlation in residual variation was given by
an Ornstein-Uhlenbeck (OU) evolutionary process along the
phylogenetic tree; this is often used to model the effects of
stabilizing selection around an optimum (see App. A). We refer
to this model as regression under an OU process (RegOU).
The program Regressionv2.m estimates the optimal OU trans-
formation parameter, d, using restricted maximum likelihood
(REML). A d value of 1 indicates that the statistical model with

the original starter branch lengths (i.e., the PGLS model) best
fits the data (residuals from the multiple regression equation),
a d value of 0 indicates that a star phylogeny (i.e., the OLS
model) best fits the data, and a d value between 0 and 1, which
is most typically found, indicates that branch lengths that are
intermediate between the starter and a star phylogeny provide
the best fit. Compared with PGLS or OLS models, the RegOU
model contains one more estimated parameter. When the
RegOU model fits the data significantly better than the OLS
model (as judged by a likelihood ratio test), in which case d is
estimated to be significantly greater than 0, then the residual
variation in the dependent variable exhibits statistically signif-
icant phylogenetic signal.

For each trait, we considered increasingly complex models,
in the following order. For pooled analyses of birds and mam-
mals, we compared models that specified simple allometry,
ANCOVA with different intercepts but the same pooled slope,
and ANCOVA with different intercepts and different slopes.
For separate analyses of birds and mammals, we tested for diet
effects by comparing models that specified simple allometry,
ANCOVA with different intercepts but the same pooled slope,
and ANCOVA with different intercepts and different slopes.
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Table 3: Statistical tests of the effect of diet (carnivore, omnivore, herbivore, nectarivore, or frugivore) on the allometric
relation between small intestine length and body mass in birds ( )N p 220

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �67.8 141.7
PGLS �41.5a 88.9
RegOU .621 �25.2a 58.4b

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 4) Partial F for Diet

P for Partial F
(df p 4, 214)

OLS �63.0 140.1 9.61 .0476 2.39 .0521
PGLS �38.4a 90.9 6.04 .1965 1.49 .2069
RegOU .627 �22.8a 61.7 4.76 .3133 1.18 .3198

ANCOVA with Different Slopes (Diet # Mass) and Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 4)

Partial F for Diet
and Diet # Mass
Interaction

P for Partial F
(df p 8, 210)

OLS �56.8 135.7 12.40 .0146c 2.76 .0064d

PGLS �37.7a 97.3 1.55 .8177c .92 .5000d

RegOU .619 �20.8a 65.5 4.13 .3893c 1.08 .3808d

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a On the basis of LRTs, the PGLS model is statistically significantly better than the OLS model, and the RegOU model is statistically significantly better than

the PGLS model (and the OLS model).
b Best model by criterion of lowest AIC.
c LRT comparing model with different slopes and intercepts with model that has parallel slopes.
d Partial F-test comparing model with different slopes and intercepts with simple allometry model.

Models were compared in several ways in an attempt both
to determine what model best fit the data and to test particular
hypotheses (bird vs. mammal, effect of diet; Ludden et al. 1994;
Johnson and Omland 2004). For all four primary traits analyzed
(small intestine length, nominal surface area, mass, and vol-
ume), body mass explained a large proportion of the total
variance. Therefore, the simple-allometry model can be con-
sidered “good” in a general sense. Thus, the question becomes
whether more complex models are warranted. We used max-
imum likelihood ratio tests (LRTs) when one was a nested
subset of the other (i.e., RegOU vs. either PGLS or OLS). Twice
the difference in the ln maximum likelihoods of two models
will be distributed approximately as a x2 with degrees of free-
dom equal to the difference in the number of parameters es-
timated in the two models, with this approximation improving
as sample sizes increase. We also used LRTs to compare PGLS
with OLS models, which have the same number of parameters.
In such comparisons with 0 df, a difference in ln likelihoods
13.8414 (which is the ninety-fifth percentile of the distribution
of x2 with 1 df) is often taken to indicate a significant difference
in the fit of two models (e.g., see Felsenstein 2004, p. 309). As
an alternative to LRTs for the nested models that should gen-
erally yield similar results, we also report partial F-tests to gauge
the significance of clade or diet effects. Although the phylo-
genetic tree we used contained a number of soft polytomies,

indicating uncertainty about the true branching relationships,
for simplicity we did not subtract any degrees of freedom for
these hypothesis tests (Purvis and Garland 1993; Garland and
Dı́az-Uriarte 1999); thus, because these tests do not explicitly
include the uncertainty in the phylogenetic tree, they might
tend to be liberal (Rohlf 2006).

As a heuristic indicator of the support of models, we report
the AIC using the smaller-is-better formulation (AIC p
( maximum likelihood) � ( parameters)).�2 # ln 2 # no.
When comparing a series of models, nested or not, the one
with the lowest AIC is considered to be the best. As a rule of
thumb, models whose AIC is ≤2 units larger can also be said
to have substantial support (Burnham and Anderson 2002;
Duncan et al. 2007). Note that maximum likelihoods are used
for computing AIC and LRTs, whereas REML is used for es-
timating coefficients in the model, such as the allometric scaling
exponent. REML estimates of d are also reported.

For comparability with previous studies, we present al-
lometric equations from both OLS and RegOU models, sep-
arately for birds and for mammals. In most cases, the RegOU
models were preferred on the basis of the AIC values. The
equations presented can be used for general predictions, but
those predictions could be improved by use of the methods
of Garland and Ives (2000) and could be implemented in
the DOS PDTEE program (http://biology.ucr.edu/people/
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Table 4: Statistical tests of the effect of diet (carnivore, omnivore, herbivore, or frugivore) on the allometric relation between
small intestine length and body mass in mammals ( )N p 64

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �11.3 28.6
PGLS �23.8 53.6
RegOU .191 �9.9 27.9a

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 3) Partial F for Diet

P for Partial F
(df p 3, 59)

OLS �9.4 30.8 3.78 .2863 1.20 .3190
PGLS �22.2 56.4 3.16 .3680 .99 .4017
RegOU .213 �8.6 31.2 2.67 .4452 .79 .5058

ANCOVA with Different Slopes (Diet # Mass) and Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 3)

Partial F for Diet
and Diet # Mass
Interaction

P for Partial F
(df p 6, 56)

OLS �5.3 28.5 8.28 .0405b 1.94 .0909c

PGLS �17.3 52.7 9.74 .0209b 2.08 .0696c

RegOU .140 �5.1 30.2 7.05 .0702b 1.43 .2210c

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a Best model by criterion of lowest AIC.
b LRT comparing model with different slopes and intercepts with model that has parallel slopes.
c Partial F-test comparing model with different slopes and intercepts with simple allometry model.

faculty/Garland/PDAP.html) as well as Mesquite PDAP:PDTree
(http://mesquiteproject.org/pdap_mesquite/index.html). The
Johnson-Neyman technique, applied nonphylogenetically, was
used to determine regions over which the allometric relations
did not significantly differ between birds and mammals. This
technique has not yet been developed to include phylogeny;
however, it is useful when regression lines are not parallel.
Intersecting regression lines cannot be statistically compared
using a simple ANCOVA because the data violate the assump-
tion of homogeneity of regression slopes. The Johnson-Neyman
technique allows one to determine the range of X values for
which there is no significant difference between experimental
groups (White 2003).

Results

Clade-specific allometric equations for each of the four primary
traits are shown in Table 1. For birds, the phylogenetic RegOU
models, which contain one additional parameter (d), always
provided better fits to the data (had lower AIC values) as com-
pared with the nonphylogenetic OLS models. LRTs indicated
that, with the exception of small intestine volume, the RegOU
models fit the data significantly ( ) better than the OLSP ! 0.05
models. Thus, for at least three of the four traits in birds, the
residual values can be said to have statistically significant phy-
logenetic signal. For mammals, the RegOU model fit the data
significantly better than the OLS model (LRTs) only for small

intestine wet mass ( ); thus, for the rest of the traits,P p 0.0054
phylogenetic signal was not apparent ( ).P 1 0.05

Small Intestine Length

As suggested by Figure 1 and demonstrated statistically in Table
2, comparison of birds with mammals indicated that a model
with different slopes and intercepts provided the best fit (i.e.,
it had the lowest AIC value). The separate allometric equations
for birds and mammals are shown in Table 1. The Johnson-
Neyman technique indicated that birds !365 g had small in-
testines significantly shorter than those of comparably sized
mammals. For all models, LRTs indicated that the phylogenetic
regression model with the OU transform provided a signifi-
cantly better fit than the PGLS model, which in turn provided
a better fit than the OLS model; thus, small intestine length
had significant phylogenetic signal even after accounting for
the strong correlation with body mass and the clade difference
between birds and mammals.

With diet in the model (Table 3), significant phylogenetic
signal in bird small intestine length was again indicated by LRTs
that showed significantly better fits for RegOU versus PGLS
and for PGLS versus OLS. For the RegOU model, both LRTs
and partial F-tests indicated that diet did not significantly affect
small intestine length in birds.

In mammals, the best-fitting model was again simple allom-
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Table 5: Statistical tests of the effect of clade (bird vs. mammal) on the allometric relation between small intestine nominal
surface area and body mass ( )N p 200

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �124.6 255.1
PGLS �136.3 278.6
RegOU .495 �110.7a 229.5

ANCOVA with Same Slope but Different Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 1) Partial F for Clade

P for Partial F
(df p 1, 197)

OLS �96.0 200.0 57.12 !.0001 65.13 !.0001
PGLS �136.0 280.1 .51 .4751 .50 .4803
RegOU .192 �91.4a 192.7b 38.74 !.0001 49.75 !.0001

ANCOVA with Different Slopes (Clade # Mass) and Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 1)

Partial F for Clade
and Clade # Mass
Interaction

P for Partial F
(df p 2, 196)

OLS �94.6 199.2 2.83 .0925c 34.26 !.0001d

PGLS �135.9 281.8 .24 .6242c .37 .6912d

RegOU .185 �90.9a 193.8 .94 .3323c 25.53 !.0001d

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a On the basis of LRTs, the RegOU model is statistically significantly better than the PGLS model and the OLS model.
b Best model by criterion of lowest AIC. See Table 1 for separate allometric equations for birds and mammals.
c LRT comparing model with different slopes and intercepts with model that has parallel slopes.
d Partial F-test comparing model with different slopes and intercepts with simple allometry model.

Figure 2. Small intestine nominal surface area (cm2; area of a smooth
bore tube) versus body mass (g) in birds and nonflying mammals on
a double-logarithmic scale. Nonflying mammals are depicted by crosses
and solid line (regression statistics in Table 1), and birds are depicted
by circles and dashed line. Birds had small intestine area significantly
smaller than that of mammals (by 51%; bird slope, ;0.733 � 0.0255
mammal slope, ). See text for statistical comparisons.0.703 � 0.0172

etry by RegOU (Table 4), and LRTs and partial F-tests indicated
that diet did not significantly affect small intestine length. Un-
like in birds, the RegOU model was not much better than OLS
( ; LRT, , , ), indicat-2DAIC p 0.7 x p 2.8 df p 1 0.05 ! P ! 0.10
ing relatively weak evidence for significant phylogenetic signal
in body mass–adjusted small intestine length.

Small Intestine Nominal Surface Area

Comparison of birds with mammals indicated that models with
the same slope but different intercepts provided the best fit
(Table 5); birds had small intestine nominal surface area sig-
nificantly less than that of mammals (Fig. 2). The RegOU mod-
els always provided the best fit (lowest AIC), and they were
significantly better than OLS models by LRTs; thus, small in-
testine nominal surface area had significant phylogenetic signal,
even after statistically accounting for the strong correlation with
body mass and the clade difference between birds and mam-
mals.

With diet in the model for birds (Table 6), the best fit was
provided by the ANCOVA with different slopes and intercepts
by OLS; therefore, diet significantly affected small intestine
nominal surface area and in a fairly complicated way. In mam-
mals, the best-fitting model was also the ANCOVA with dif-
ferent slopes and intercepts by OLS (Table 7), so again diet
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Table 6: Statistical tests of the effect of diet (carnivore, omnivore, herbivore, nectarivore, or frugivore) on the allometric
relation between small intestine nominal surface area and body mass in birds ( )N p 86

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �20.0 46.0
PGLS �36.4 78.8
RegOU .244 �17.0a 42.1

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 4) Partial F for Diet

P for Partial F
(df p 4, 80)

OLS �13.6 41.3 12.74 .0126 3.19 .0061
PGLS �31.5 77.0 9.83 .0434 2.42 .0551
RegOU .190 �12.6 41.2 8.90 .0636 2.14 .0834

ANCOVA with Different Slopes (Diet # Mass) and Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 4)

Partial F for Diet
and Diet # Mass
Interaction

P for Partial F
(df p 8, 76)

OLS �8.4 38.8b 10.41 .0341c 2.93 .0066d

PGLS �28.2 78.5 6.53 .1629c 1.99 .0590d

RegOU .181 �7.5 39.0 10.18 .0375c 2.32 .0277d

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a On the basis of LRTs, the RegOU model is statistically significantly better than the PGLS model and the OLS model.
b Best model by criterion of lowest AIC.
c LRT comparing model with different slopes and intercepts with model that has parallel slopes.
d Partial F-test comparing model with different slopes and intercepts with simple allometry model.

significantly affected small intestine nominal surface area, but
there was no significant phylogenetic signal.

Small Intestine Mass

There was a noticeable outlier for small intestine mass for the
largest mammal (Tursiops truncates; Chivers and Hladik 1980).
The value for this small intestine mass (430 g) was about an
order of magnitude less than what we would expect on the
basis of the species’ body mass (450 kg). Thus, we removed
this data point from our database and our analyses. For the
combined bird plus mammal data set (Table 8), LRTs and par-
tial F-tests indicated that the clades did not have significantly
different small intestine mass (Fig. 3). The best-fitting model
was simple allometry by RegOU, and it was statistically better
than the OLS model (LRT, , , ), so2x p 13.0 df p 1 P p 0.003
phylogenetic signal was significant.

For birds alone, diet did not significantly affect small intestine
mass (Table 9). The best-fitting model was simple allometry by
RegOU, and it was significantly better than the OLS model
(LRT, , , ), so phylogenetic signal2x p 5.2 df p 1 P p 0.0226
was significant.

In mammals, the best-fitting model based on AIC was OLS
(Table 10), so phylogenetic signal was not apparent. However,
diet did significantly affect small intestine mass on the basis of
LRTs and partial F-tests with the OLS model (Table 10).

Small Intestine Volume

As suggested by Figure 4 and demonstrated statistically in Table
11, comparison of birds with mammals indicated that a model
with the same slope and different intercepts provided the best
fit; the small intestine volume of birds is significantly less than
that of mammals. The RegOU model provided a slightly better
fit than the OLS model (difference in ) but not sig-AIC p 0.9
nificantly so (LRT, , , ), so small2x p 3.0 df p 1 P p 0.0833
intestine volume did not exhibit statistically significant phy-
logenetic signal.

For birds alone, the ANCOVA model with different intercepts
was significantly better than simple allometry (LRTs and partial
F-tests), so diet affected small intestine volume (Table 12). The
RegOU model was not significantly better than the OLS model
(LRT, , , ). A model with different2x p 3.0 df p 1 P p 0.0833
slopes and intercepts could not be estimated because some diet
categories had too few species.

In mammals, diet did not significantly affect small intestine
volume, based on LRTs and partial F-tests (Table 13). The
phylogenetic models fit the data worse than the OLS models,
so phylogenetic signal was not significant.

Small Intestine Villus Amplification Ratio

The villus amplification ratio relates the villus area to the nom-
inal surface area. On the basis of analyses of two previous



534 S. R. Lavin, W. H. Karasov, A. R. Ives, K. M. Middleton, and T. Garland Jr.

Table 7: Statistical tests of the effect of diet (carnivore, omnivore, or herbivore) on the allometric relation between small
intestine nominal surface area and body mass in mammals ( )N p 114

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �68.3 142.7
PGLS �92.1 190.1
RegOU .125 �66.9 141.8

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 2) Partial F for Diet

P for Partial F
(df p 2, 110)

OLS �67.0 144.1 2.62 .2698 1.28 .2821
PGLS �91.4 192.9 1.26 .5326 .61 .5452
RegOU .131 �65.6 143.3 2.55 .2794 1.23 .2963

ANCOVA with Different Slopes (Diet # Mass) and Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 2)

Partial F for Diet
and Diet # Mass
Interaction

P for Partial F
(df p 4, 108)

OLS �61.3 136.6a 11.45 .0033b 3.55 .0092c

PGLS �89.5 193.0 3.85 .1459b 1.24 .2983c

RegOU .048 �61.0 137.9 9.37 .0092b 3.05 .0200c

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a Best model by criterion of lowest AIC.
b LRT comparing model with different slopes and intercepts with model that has parallel slopes.
c Partial F-test comparing model with different slopes and intercepts with simple allometry model.

studies, we found (Table 14) that the allometric slopes for villus
area and nominal surface area were not significantly different
from each other within either birds (data from Ricklefs 1996)
or mammals (data from Snipes 1997), so we subsequently tested
whether the villus amplification ratio (villus area/nominal sur-
face area) scaled with body mass. This ratio did not scale with
body mass in either birds ( , , ) orF p 1.15 df p 1, 24 P p 0.29
mammals ( , , ).F p 0.50 df p 1, 18 P p 0.49

Using the full data set, we again found that villus amplifi-
cation ratio did not scale with body mass (top half of Table
15). However, birds had significantly larger small intestine villus
amplification ratios compared with those of mammals on the
basis of both LRTs and partial F-tests (bottom half of Table
15). In both analyses, OLS models had AIC values lower than
those of PGLS or RegOU models, thus indicating no evidence
for significant phylogenetic signal beyond the clade difference.

Discussion

We used a statistical approach that incorporates phylogenetic
information to estimate allometric scaling relations for small
intestine morphometric traits; to determine whether they differ,
on average, between birds and nonflying mammals; to test for
effects of diet within both clades; and to test for the presence
of phylogenetic signal (the tendency for related species to re-
semble each other). The allometric equations presented in Table

1 can be used as general descriptors for birds or for nonflying
mammals (not accounting for diet effects). Whether the OLS
or the RegOU version is better can be judged by which has the
lower AIC value and also by an LRT to determine whether the
more complex model (RegOU) is statistically significantly better
than the simpler one. In most cases in Table 1, the phylogenetic
model not only had a lower AIC but also fit significantly
( ) better than the OLS model based on the LRT. ThisP ! 0.05
indicates that the residuals from the regression model contain
significant phylogenetic signal. A separate issue is whether the
estimates of the slopes from the two models are different. That
can be judged by computing the 95% confidence interval (CI)
about the RegOU slope and asking whether it includes the point
estimate of the slope from the OLS model. For example, the
RegOU estimate of the allometric slope for small intestine
length of birds is 0.468 with a 95% CI of 0.435–0.501. This
does not include the point estimate of 0.520 from the OLS
model. The RegOU model is preferred on the basis of the AIC
and is statistically significantly better on the basis of the LRT
(Table 1); as a consequence, if the inferior OLS model were
used, then the resulting estimate of the slope would fall outside
the 95% CI of the best slope estimate. Thus, as has been pointed
out before (e.g., Garland et al. 1993; Garland and Ives 2000),
phylogenetic models can yield different estimates of slopes in
allometric analyses, even when the range of body masses is
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Table 8: Statistical tests of the effect of clade (bird vs. mammal) on the allometric relation between small intestine mass and
body mass ( )N p 94

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �64.2 134.4
PGLS �74.4 154.9
RegOU .472 �57.7a 123.3b

ANCOVA with Same Slope but Different Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 1) Partial F for Clade

P for Partial F
(df p 1, 91)

OLS �63.2 134.5 1.94 .1637 1.90 .1715
PGLS �74.4 156.9 .004 .9496 .003 .9564
RegOU .482 �57.6a 125.3 .09 .7642 .06 .8070

ANCOVA with Different Slopes (Clade # Mass) and Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 1)

Partial F for Clade
and Clade # Mass
Interaction

P for Partial F
(df p 2, 90)

OLS �62.0 134.0 2.49 .1146c 2.18 .1190d

PGLS �74.4 158.9 .01 .9203c .007 .9930d

RegOU .467 �56.4a 124.8 2.40 .1213c 1.15 .3212d

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a On the basis of LRTs, the RegOU model is statistically significantly better than the PGLS and the OLS model.
b Best model by criterion of lowest AIC. See Table 1 for separate allometric equations for birds and mammals.
c LRT comparing model with different slopes and intercepts with model that has parallel slopes.
d Partial F-test comparing model with different slopes and intercepts with simple allometry model.

Figure 3. Small intestine wet mass (g) versus body mass (g) in birds
and nonflying mammals on a double-logarithmic scale. Nonflying
mammals are depicted by crosses and solid line (regression statistics
in Table 1), and birds are depicted by circles and dashed line. Small
intestine wet mass did not differ significantly between birds and mam-
mals (bird slope, ; mammal slope, ). See0.844 � 0.0608 0.926 � 0.0351
text for statistical comparisons.

large. Such differences in estimates of allometric slopes are of
crucial importance for testing alternative hypotheses about why
traits scale with particular allometries (e.g., Chown et al. 2007).

We found that small birds (!365 g in body mass) had sig-
nificantly shorter small intestines and avian species generally
had less small intestine surface area and a smaller volume of
small intestine as compared with nonflying mammals (Figs. 1–
4). For example, on the basis of our data set, a 20-g bird would
have a small intestine that is 33% shorter than that of a com-
parably sized mammal, and a 200-g bird would have a small
intestine that is 20% shorter than that of a comparably sized
mammal. Moreover, birds have 51% less nominal surface area
and 32% smaller small intestine volumes compared with those
of mammals. While small intestine surface area and volume
were significantly smaller in birds compared with nonflying
mammals, the small intestine wet mass was not significantly
different between clades (Fig. 3; Table 8). Assuming a 1 : 1 ratio
for gut volume and digesta volume and a density of 1 g (cm3)�1

for tissue and digesta, intestine mass is a small proportion of
the sum total of the whole intestine with digesta. Comparable
intestine mass between taxa, yet a smaller gut volume in birds
compared with that in nonflying mammals, is consistent with
the advantage of decreasing digesta volume and the total mass
of the gut plus digesta, thus minimizing two kinds of costs
associated with flight: the cost of flight increases with load
carried, and takeoff and maneuverability can be impaired at
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Table 9: Statistical tests of the effect of diet (carnivore, omnivore, or herbivore) on the allometric relation between small
intestine mass and body mass in birds ( )N p 34

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �20.9 47.7
PGLS �21.5 48.9
RegOU .747 �18.3a 44.7b

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 2) Partial F for Diet

P for Partial F
(df p 2, 30)

OLS �19.2 48.4 3.33 .1892 1.54 .2309
PGLS �19.9 49.8 3.18 .2039 1.47 .2460
RegOU .728 �16.6a 45.1 3.59 .1661 1.64 .2109

ANCOVA with Different Slopes (Diet # Mass) and Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 2)

Partial F for Diet
and Diet # Mass
Interaction

P for Partial F
(df p 4, 28)

OLS �18.5 51.1 1.32 .5169c 1.03 .4091d

PGLS �18.3 50.6 3.17 .2049c 1.44 .2469d

RegOU .776 �15.7a 47.5 1.65 .4382c 1.21 .3287d

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a On the basis of LRTs, the RegOU model is statistically significantly better than the PGLS model and the OLS model.
b Best model by criterion of lowest AIC.
c LRT comparing model with different slopes and intercepts with model that has parallel slopes.
d Partial F-test comparing model with different slopes and intercepts with simple allometry model.

heavier masses (Guillemette 1994; Norberg 1995; Nudds and
Bryant 2002).

Birds and nonflying mammals had comparable small intes-
tine masses, yet small birds had shorter small intestines, and
birds generally had less nominal surface area of the small in-
testine. What might account for this discrepancy? One possi-
bility is that birds may have thicker small intestines. For ex-
ample, birds may have thicker layers of musculature lining their
alimentary canal. Interestingly, birds also have a shorter mean
retention time of fluids and particles (Lavin 2007); perhaps a
thicker, more muscular gut allows more mixing or mechanical
digestion, or birds may propel digesta more quickly through
the canal as a means to minimize the digesta load at any given
time. In birds, a greater surface area due to villi or microvilli
per unit villus area may also account for similar small intestine
masses despite length differences. Accordingly, while we did
not note a body mass trend for the villus amplification ratio,
we did find a significant difference between taxa; however, mea-
surements of this ratio were conducted using varying tech-
niques that can produce dramatically different results even
within species (Kisielinski et al. 2002). The magnitude of the
difference in villus amplification ratio between birds and non-
flying mammals, however, was only about 15% (Table 14),
which suggests that even if birds have villus area per unit nom-
inal area significantly greater than that of mammals, this in-
crease is not sufficient to compensate for a 50% reduction in

nominal surface area. The only measurements of microvilli in
any avian species that we found in the literature were for chick-
ens (e.g., Smith et al. 1990). Thus, future studies could use
electron microscopy to measure microvilli surface area en-
hancement factors to make comparisons between taxa.

Linear dimensions are expected to scale with the 0.33 power
of body mass (Schmidt-Nielsen 1984), and we indeed found
scaling for intestine length far below 1.0 and somewhat close
to expectation (birds: ; mammals:0.468 � 0.0169 0.395 �

; Table 1). Our observations of small intestine nominal0.0160
surface area scaling to the (birds) and the0.733 � 0.0255

(mammals) powers of body mass are what we0.703 � 0.0172
would expect from an organ that delivers nutrients to fuel
metabolic rate, scaling to approximately the 0.68 power in birds
and the 0.73 power in mammals (Nagy 2005). Additionally, we
estimated that small intestine volume in birds and mammals
scaled with body mass to the and the0.891 � 0.0455

powers, respectively, which is slightly less than0.964 � 0.0276
the isometric scaling with body mass that was reported by Parra
(1978).

In our study, diet was a significant factor affecting some small
intestine dimensions in birds and/or mammals (Tables 6, 7, 10,
12). In some cases, the effect was complicated, as for small
intestine nominal surface areas of both birds (Table 6) and
mammals (Table 7), where diet categories differed in both al-
lometric slopes and intercepts. Generally, we found that within
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Table 10: Statistical tests of the effect of diet (carnivore, omnivore, or herbivore) on the allometric relation between small
intestine mass and body mass in mammals ( )N p 60

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �41.0 88.1
PGLS �50.0 106.0
RegOU .386 �37.2a 82.3

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 2) Partial F for Diet

P for Partial F
(df p 2, 56)

OLS �30.6 71.3b 20.78 !.0001 11.59 !.0001
PGLS �49.9 109.8 .19 .9094 .09 .9141
RegOU 7.63 E -9 �30.6 73.3 13.04 .0015 11.59 !.0001

ANCOVA with Different Slopes (Diet # Mass) and Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 2)

Partial F for Diet
and Diet # Mass
Interaction

P for Partial F
(df p 4, 54)

OLS �30.4 74.9 .44 .8025c 5.73 .0006d

PGLS �47.3 108.5 5.28 .0714c 1.29 .2855d

RegOU 7.629 E -9 �30.4 76.9 .44 .8025c 5.73 .0006d

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a On the basis of LRTs, the RegOU model is statistically significantly better than the PGLS model and the OLS model.
b Best model by criterion of lowest AIC.
c LRT comparing model with different slopes and intercepts with model that has parallel slopes.
d Partial F-test comparing model with different slopes and intercepts with simple allometry model.

Figure 4. Small intestine volume (cm3) versus body mass (g) in birds
and nonflying mammals on a double-logarithmic scale. Nonflying
mammals are depicted by crosses and solid line (regression statistics
in Table 1), and birds are depicted by circles and dashed line. For
birds, volumes of small intestine were significantly smaller than those
of mammals (by 32%; bird slope, ; mammal slope,0.891 � 0.0455

). See text for statistical comparisons.0.964 � 0.0276

birds, herbivores had the largest small intestine nominal surface
area and volume and nectarivores had the smallest. Within
mammals, the small intestine nominal surface area, volume,
and mass of carnivores and herbivores were slightly larger than
those of omnivores.

Importantly, we sometimes found major differences between
the results of conventional and phylogenetic analyses. For ex-
ample, the OLS models indicated a significant effect of diet on
small intestine length for birds, whereas the phylogenetic mod-
els, which fit the data much better, did not (Table 3). This is
but one of many examples in which diet effects have been found
for various morphometric or physiological traits when phy-
logenetic information is not incorporated into statistical anal-
yses (e.g., Garland et al. 1993; Rezende et al. 2004).

In the analyses of diet effects, we sometimes found that the
phylogenetic models (PGLS and/or RegOU) fit significantly bet-
ter than the OLS models, thus indicating statistically significant
phylogenetic signal (Tables 3, 8, 9), but we also sometimes
found that this was not the case (Tables 6, 7, 10, 12, 13). We
also found cases for which the model selection criterion of
lowest AIC versus examination of LRTs or partial F-tests would
suggest using different models; the best model selected by the
AIC is not statistically significantly better than a simpler model.
For example, in the diet analysis of small intestine volume in
mammals (Table 13), the model with the lowest AIC for both
OLS and RegOU was the ANCOVA with the same slope but
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Table 11: Statistical tests of the effect of clade (bird vs. mammal) on the allometric relation between small intestine volume
and body mass ( )N p 156

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �153.4 312.8
PGLS �175.7 357.5
RegOU .229 �150.7a 309.4

ANCOVA with Same Slope but Different Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 1) Partial F for Clade

P for Partial F
(df p 1, 153)

OLS �137.4 282.8 32.22 !.0001 34.83 !.0001
PGLS �175.3 358.5 .95 .3297 .94 .3338
RegOU .129 �135.9 281.9b 29.54 !.0001 32.44 !.0001

ANCOVA with Different Slopes (Clade # Mass) and Intercepts (Clade)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 1)

Partial F for Clade
and Clade # Mass
Interaction

P for Partial F
(df p 2, 152)

OLS �136.1 282.2 2.55 .1103c 18.84 !.0001d

PGLS �174.9 359.9 .66 .4166c .79 .4557d

RegOU .109 �135.0 282.1 1.80 .1797c 17.36 !.0001d

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a On the basis of LRTs, the RegOU model is statistically significantly better than the PGLS model and the OLS model.
b Best model by criterion of lowest AIC. See Table 1 for separate allometric equations for birds and mammals.
c LRT comparing model with different slopes and intercepts with model that has parallel slopes.
d Partial F-test comparing model with different slopes and intercepts with simple allometry model.

different intercepts. However, for this model neither the LRT
nor the partial F-test indicated that the model was significantly
better than a model of simple allometry (i.e., no effect of diet).
This apparent discrepancy is caused by the different conceptual
objectives of the two approaches. In model selection, models
are compared according to some criterion (such as AIC), and
the best is selected. When applying an LRT or a partial F-test,
the simpler model is a priori identified as preferred, and it is
overthrown by a more complex model only if the probability
that the observed data could have been generated by the simple
model is small (e.g., 5%) compared with the more complex
model. Given this preference for the simple model in LRTs and
partial F-tests, it is not surprising that these tests would some-
times lead one to accept a simpler model than model selection
based on AIC (e.g., Ludden et al. 1994).

Using a subset of our data, we compared the ratio of hindgut
(large intestine � ceca) volume with small intestine volume.
Dietary trends were also evident; carnivores and omnivores had
smaller ratios, while herbivores and omnivores had larger ratios,
indicating that the hindguts of herbivores tended to be relatively
larger compared with those of carnivores. Indeed, Chivers and
Hladik (1980) also found extensive overlap among diet groups
for regression lines of small intestine volume and body size in
mammals, but they found that herbivores had more volumi-
nous hindguts compared with those of carnivores. The pro-
portion of the total volume of the gut attributed to the small

intestine was large for carnivores, moderate for frugivores, and
small for herbivores (Chivers and Hladik 1980). It seems, then,
that animals have comparably sized small intestines within taxa
and that adaptations to particular diets (e.g., plants) relate pri-
marily to hindgut additions such as an extensive large intestine
and/or ceca for microbial fermentation of digesta after it has
cleared the small intestine. We also noted that the majority of
the whole-gut volume was the small intestine in birds (∼80%
small intestine; in mammals, ∼50%); accordingly, our conclu-
sion of less intestine in birds would be magnified if we com-
pared the whole gut between taxa (but very few data on the
whole gut are available for birds). The storage of leafy material
to enable time for cellulose digestion via symbiotic microbes
is a major disadvantage for flying organisms (Morse 1975).
Therefore, it is far more likely for a nonflying mammalian
species to possess a considerable amount of hindgut than it is
for an avian species to possess a large hindgut, which makes
sense from the argument of the costs of carrying extra mass.

Implications for Avian Species Having Less Gut

Among terrestrial vertebrates, bird species have the highest
feeding rate, in order to obtain metabolizable energy for use
in their natural habitats. For example, a typical bird eats 30%–
45% more food than does a typical comparably sized mammal
(Nagy 2001). Given the reduced size of their small intestine,
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Table 12: Statistical tests of the effect of diet (carnivore, omnivore, herbivore, nectarivore, or frugivore) on the allometric
relation between small intestine volume and body mass in birds ( )N p 65

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �52.8 111.6
PGLS �67.6 141.2
RegOU .245 �51.3 110.6

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 4) Partial F for Diet

P for Partial F
(df p 4, 59)

OLS �45.9 105.8 13.84 .0078 3.50 .0125
PGLS �61.7 137.3 11.87 .0183 2.96 .0269
RegOU .216 �44.4 104.8a 13.79 .0080 3.44 .0136

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a Best model by criterion of lowest AIC.

how do birds satisfy relatively high energy needs with relatively
low absorptive surface area? Theoretically, birds might com-
pensate for a reduced small intestine with a longer gut retention
time of food, an increased mucosal surface area via a greater
villus and/or microvillus area, increased reaction rates (in-
creased rate of mediated transport and/or enzyme hydrolysis),
and/or an alternative means of nutrient transport. Otherwise,
birds may operate with a narrower spare capacity (a reduced
digestive capacity to meet an increase in metabolic needs) com-
pared with that of nonflying mammals (for a review of digestive
spare capacity, see Karasov and McWilliams 2005). We review
each of these possibilities.

The amount of energy extracted from a meal is positively
related to the retention time of food in the gastrointestinal tract,
up to the point where most absorbable material is extracted.
Because the mean retention time of fluids and particles was
significantly shorter in birds than in mammals (Lavin 2007),
birds do not retain food in their gastrointestinal tract for ex-
tended periods of time, in order to extract more nutrients with
less gut. We found some evidence that the villus amplification
ratio was greater in avian species compared with mammalian
species, but this finding could simply be an artifact of differ-
ences in methodology. Furthermore, the magnitude of the dif-
ference in villus area between taxa (15% greater area in birds)
was not sufficiently large to completely compensate for a 50%
reduction in nominal surface area.

Is there a faster rate of nutrient breakdown and/or absorption
in birds versus mammals? If so, it may explain how birds man-
age to obtain sufficient energy with a reduced gut. There do
not appear to be fundamental differences between birds and
mammals in the primary enzymes and nutrient transporters of
the intestinal brush border membrane (Karasov and Hume
1997). Also, there was no significant difference between om-
nivorous birds and mammals in transporter-mediated uptake
rate of d-glucose or total amino acid l-proline uptake per unit
nominal surface area of small intestine ( bird species, andn p 7

mammal species; Karasov and Hume 1997). Measure-n p 8
ments of nutrient uptake standardized per unit nominal in-
testine area inherently take differences in surface amplification
into account and do not differ significantly between birds and
mammals, suggesting that total capacity for mediated uptake
is lower in birds. Thus, the difference in total intestinal surface
area between birds and nonflying mammals is not likely to be
counterbalanced by greater digestive surface amplification by
villi in birds, at least in the case of mediated nutrient uptake.
There was also no significant difference in small intestine
hydrolase-specific (sucrase, aminopeptidase-N, maltase, and
isomaltase) activity per gram protein between birds and mam-
mals ( bird species, and mammal species,n p 6–15 n p 4–24
depending on enzyme; T. J. McWhorter, personal communi-
cation), suggesting that autoenzymatic reaction rates also do
not compensate for the smaller intestinal surface area of birds
relative to that of mammals.

In yellow-rumped warblers (Dendroica coronata), rainbow
lorikeets (Trichoglossus haematodus), house sparrows (Passer do-
mesticus), and northern bobwhites (Colinus virginianus) but not
in mice, rats, and rabbits, the capacity for mediated transport
of d-glucose measured in vitro underestimated the total glucose
uptake at the whole-animal level (Ferraris and Diamond 1989;
Karasov and Cork 1994; Caviedes-Vidal and Karasov 1996; Kar-
asov et al. 1996; Afik et al. 1997a). Might these small birds use
a different transport pathway that accounts for d-glucose ab-
sorption differences seen in vitro versus in vivo, as well as one
that compensates for having a reduced gut? Absorption of car-
bohydrates can occur with the aid of specific protein carriers
that transport these compounds across the apical and basola-
teral membranes of intestinal cells. But also, absorption of these
compounds may occur through junctions between adjacent en-
terocytes (paracellularly) rather than across their apical
membrane, and this absorption does not exhibit saturation
kinetics; thus, paracellular nutrient absorption capacity is
matched to dietary load (Pappenheimer 1993; Karasov and
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Table 13: Statistical tests of the effect of diet (carnivore, omnivore, or herbivore) on the allometric relation between small
intestine volume and body mass in mammals ( )N p 91

Simple Allometry

Model d
ln Maximum
Likelihood AIC

OLS �82.9 171.9
PGLS �105.1 216.2
RegOU .037 �82.8 173.6

ANCOVA with Same Slope but Different Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Simple Allometry

P for LRT
(df p 2) Partial F for Diet

P for Partial F
(df p 2, 87)

OLS �80.4 170.7a 5.12 .0773 2.52 .0847
PGLS �104.7 219.3 .91 .6344 .44 .6455
RegOU .013 �80.4 172.7 4.85 .0885 2.37 .0995

ANCOVA with Different Slopes (Diet # Mass) and Intercepts (Diet)

Model d
ln Maximum
Likelihood AIC

x2 for LRT vs.
Different
Intercepts

P for LRT
(df p 2)

Partial F for Diet
and Diet # Mass
Interaction

P for Partial F
(df p 4, 85)

OLS �79.3 172.5 2.23 .3279b 1.79 .1383c

PGLS �104.4 222.8 .54 .7634b .34 .8503c

RegOU .004 �79.3 174.5 2.21 .3312b 1.71 .1553c

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a Best model by criterion of lowest AIC.
b LRT comparing model with different slopes and intercepts with model that has parallel slopes.
c Partial F-test comparing model with different slopes and intercepts with simple allometry model.

Table 14: Nonphylogenetic regression analyses for
small intestine villus area and nominal surface
area for birds (data from Ricklefs 1996) and
mammals (data from Snipes 1997)

Y-intercept Slope

Birds (n p 26):
Villus area 2.24 � .08 .70 � .04
Nominal surface area .52 � .06 .59 � .09

Mammals (n p 20):
Villus area 1.89 � .11 .71 � .04
Nominal surface area .54 � .10 .74 � .03

Note. Both data sets were ln transformed. Slopes for villus area

and nominal surface area were not significantly different in birds

( , , ) or mammals ( ,F p 0.58 df p 1, 48 P p 0.45 F p 0.31 df p
, ).1, 36 P p 0.58

Cork 1994). While paracellular absorption offers a relatively
inexpensive means of nutrient uptake, because it is not active
and does not involve synthesis of transporters, it is less specific
than transcellular absorption; consequently, animals that have
extensive paracellular absorption may be exposed to greater
systemic concentrations of water-soluble toxins found in the
diet (Diamond 1991).

Paracellular absorption, measured as the bioavailability of
small, inert carbohydrate probes (l-rhamnose, l-glucose,
mannitol; molecular weight 164–180 Da), was relatively low in
11 species of nonflying mammals, averaging 0.13 � 0.03
(Caviedes-Vidal et al. 2007). Consequently, paracellular ab-
sorption was found to contribute little (!7%) to total glucose
absorption in mammals of various sizes (Fine et al. 1993;
Schwartz et al. 1995; Uhing and Kimura 1995; Lane et al. 1999;
Lavin et al. 2007). In contrast, bioavailability of the same probes
averaged more than four times higher in 10 avian species
( ; ; Caviedes-Vidal et al. 2007), and para-0.56 � 0.09 P ! 0.001
cellular absorption has been estimated to account for 150% of
glucose absorption in several birds (Karasov and Cork 1994;
Caviedes-Vidal and Karasov 1996; Levey and Cipollini 1996;
Afik et al. 1997b; Chang and Karasov 2004; McWhorter et al.
2006; Lavin et al. 2007; Lavin and Karasov 2008). Paracellular
absorption may offer an alternate means of nutrient assimi-
lation in birds compared with nonflying mammals.

Birds may, however, be operating with a narrower spare ca-
pacity, particularly immediate spare capacity. The relative dif-

ference between the current or absolute maximal digestion rate
and the current food intake is a measure of an animal’s so-
called safety margin (Diamond 1991; but see Garland 1998).
Because bird species tend to have reduced guts, have shorter
mean retention times, and do not have increased mediated
transport or enzyme hydrolysis rates (compared with mam-
mals), their immediate capacity for increasing nutrient assim-
ilation (due to an increase in energy demands) may be more
limited than that of mammals. Furthermore, birds seem to
exhibit less modulation of transporters than do mammals: in
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Table 15: Statistical tests of the effect of body mass or clade (bird vs. mammal) on
small intestine villus amplification ratio ( )N p 69

Simple Allometry for Birds and Mammals Combined

Model d
ln Maximum
Likelihood AIC

F for Effect of
Body Mass

P for Body Mass
(df p 1, 67)

OLS �51.1 108.3a .68 .4125
PGLS �60.4 126.8 .61 .4375
RegOU .518 �50.3 108.6 .06 .8072

Test for Effect of Clade (Bird vs. Mammal; Body Mass Not in Model)

Model d
ln Maximum
Likelihood AIC

F for Effect
of Clade

P for Clade
(df p 1, 67)

OLS �48.0 102.0a 7.12 .0096
PGLS �60.7 127.3 .12 .7301
RegOU .316 �48.0 103.9 5.24 .0252

Note. See Table 2 note for additional information and definitions of variables and abbreviations.
a Best model by criterion of lowest AIC.

contrast to mammals, several species of birds did not increase
mediated glucose absorption rates when switched to a higher-
carbohydrate diet (Karasov 1992; Levey and Karasov 1992;
Caviedes-Vidal and Karasov 1996; Afik et al. 1997a). Also,
growing chickens fed a carbohydrate-free diet were smaller than
birds fed a carbohydrate-containing diet, possibly because the
former were not capable of increasing levels of membrane-
bound proteinases and amino acid transporters per unit nom-
inal area of intestine; instead, birds on a carbohydrate-free diet
exhibited gastrointestinal tract hypertrophy, presumably to in-
crease nutrient assimilation rates (Biviano et al. 1993). Para-
cellular transport could mitigate constraints on upregulation
of nutrient transporters. As birds become more acclimated to
an increase in energy demands (long-term spare capacity), how-
ever, the phenotypic plasticity of the digestive system (e.g.,
increased gut surface area, volume) may lessen the effects of
the digestive limitations imposed on birds, but the increase in
gut size may still be restricted by physiological constraints as-
sociated with flying.

Caveat, Conclusions, and Suggestions for Future Research

A limitation of this comparative study and of all broadly based
literature compilations is that the various species were not mea-
sured under common-garden conditions (Garland and Adolph
1991, 1994; Garland et al. 2005). Thus, it is impossible to know
how much of the variation among species may be attributable
to acute effects of the different foods they ate. On the other
hand, it would not be possible to rear all of the included species
under identical conditions because, for example, some could
not survive on a particular common diet that might be im-
posed. This is a conundrum for many comparative studies, and
one can only hope that most of the differences among species
represent evolved, genetically based differences.

Using a phylogenetically informed analysis on a large data

set (493 species), we found that small birds have shorter small
intestines and that birds, in general, have nominal surface areas
and volumes relatively smaller than those of similarly sized
nonflying mammals. A potential consequence of this is reduced
intestine area for nutrient breakdown and transport potentially
resulting in a smaller/lower spare digestive capacity. Are these
findings a consequence of load limitations imposed by flight?
Interestingly, there is evidence of both enhanced villus surface
area and high passive absorption in bats, which may also have
a reduced gut size as a consequence of flight (Barry 1976;
Mayhew and Middleton 1985; Makanya et al. 1997; Caviedes-
Vidal et al. 2007; Tracy et al. 2007). We do not find evidence
to support potential compensatory mechanisms in birds, such
as increased digesta retention time or faster reaction rates of
nutrient breakdown and absorption. One plausible means of
compensation for a limited capability of active transport of
nutrients is passive absorption of these compounds. From an
evolutionary perspective, both costs and benefits would be as-
sociated with an increased permeability to water-soluble chem-
icals. Passive absorption in flying vertebrates may confer an
advantage because it allows the assimilation of nutrients with
little energy, but because this pathway is relatively less selective,
increased intestinal permeability may result in increased de-
toxification requirements in certain species. These opposing
costs and benefits may be the reason for variations in the extent
of passive absorption among species, particularly minimal pas-
sive absorption in nonflying mammals, because nonflying spe-
cies can afford to have a lengthy and voluminous gut with
which to actively and selectively absorb nutrients.
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Appendix A

Phylogenetic Regression and the MATLAB
Regressionv2.m Program

This appendix provides a brief historical treatment to place
the analytical methods used in this article in appropriate context
relative to other phylogenetic comparative methods. It also
gives the primary documentation for the MATLAB program
Regressionv2.m (available on request from T. Garland Jr.), with
which all analyses were performed.

Historical Context

As reviewed by Martins and Hansen (1997), when analyzing
comparative data one must first translate an evolutionary hy-
pothesis into a statistical model, which will usually include a
mean structure and an error term. This is familiar from or-
dinary multiple regression analysis, in which the dependent
variable is continuously distributed. (When the dependent var-
iable is not continuously and/or not normally distributed, gen-
eral linear models [GLMs] involving link functions can be em-
ployed, and these also have phylogenetic versions; Martins and
Hansen 1997; Paradis and Claude 2002; Paradis et al. 2004; A.
R. Ives and T. Garland Jr., unpublished manuscript.) For ex-
ample, we might propose that

Y p b � b X � b X � �, (A1)0 1 1 2 2

where Y is ln intestine length, X1 is ln body mass diet, and X2

is diet. Diet might be a continuous-valued trait, such as percent
meat (e.g., Muñoz-Garcia and Williams 2005). Alternatively, as
in this article, diet might be represented by dummy var-k � 1
iables (having values 0 or 1) that code for k different diet
categories, such as omnivore, carnivore, herbivore, nectarivore,
or frugivore (see also Garland et al. 1993). In that case, we
would have b2, b3, b4, and b5 indicating the amount by which
ln intestine length deviates for four of the diet categories as
compared with one that is chosen arbitrarily as the basis for
comparison. This constitutes ordinary multiple regression with
dummy variables and is equivalent to an ANCOVA model in
which the slopes for the relation between ln intestine length
and ln body mass are constrained to be parallel.

In ordinary regression, the residual errors (�) are assumed
to be independent and identically distributed (constant vari-
ance, irrespective of the values of any of the independent var-
iables). Estimation of the regression parameters (b0, b1, b2, etc.)
and their associated standard errors (which then allows tests
of the hypothesis that a particular parameter differs from 0 or
some other value and requires an assumption of normality of

residuals) is typically accomplished by the method of ordinary
least squares (OLS), which minimizes the sum of the squared
vertical deviations (residuals). These residuals will sum to 0,
and the least squares regression line passes through the mean
value for each of the independent variables. The OLS estimates
are also the maximum likelihood (ML) estimates.

Felsenstein (1985) proposed the first fully phylogenetic sta-
tistical method, independent contrasts, for continuous-valued
traits based on a Brownian motion (random walk in continuous
time) model of character evolution and discussed how it could
be applied to regression, correlation, or such related multivar-
iate methods as principal components analysis. The first pub-
lication to use the method was that of Sessions and Larson
(1987), but the first completely worked numerical example was
shown by Garland and Adolph (1994; for another worked ex-
ample, see Garland et al. 2005). Felsenstein (1985, p. 13) cau-
tioned that “all of the above has been predicated on the ac-
ceptance of the Brownian motion model as a realistic statistical
model of character change. There are certainly many reasons
for being skeptical of its validity.”

Felsenstein (1988, pp. 464–465) was also the first to suggest
that the Ornstein-Uhlenbeck (OU) process might be used as a
model in phylogenetically based statistical methods: “The OU
process is a good model for the motion of a population which
is wandering back and forth on a selective peak under the
influence of genetic drift. Natural selection plays the role of
the elastic band. … The OU process could also serve as the
model for the wanderings of an adaptive peak in the phenotype
space, where the optimum remains within a relatively confined
region. If the peak itself wanders according to an OU process,
and the population mean is wandering by genetic drift while
tethered to the peak, the resulting movement of the population
will itself not be an OU process but can be well-approximated
by one. A major feature of an OU model of character change
is that it gradually ‘forgets’ past history. … Older history of
the species becomes less and less relevant, its influence erased
by the steady pull toward the central point. … No one has yet
discovered how to carry out statistical comparative methods in
the case of the OU process, but when this is done, it will be
found that comparisons between distantly related species
should be accorded much less weight than those between closely
related species. The Brownian motion model instead argues
that both should get equal weight. However, in another respect
the OU model is inadequate. Under it, there is no way to recover
information about events of the distant past. All record of the
ancient phenotypes is expected to have been erased by the pull
toward the central point. Systematists believe, with apparent
justification, that morphology does allow us access to infor-
mation on ancient evolutionary events. So an OU model cannot
be the whole story, any more than a Brownian motion model
can be.” Garland et al. (1993) implemented an OU model in
their PDSIMUL program.

Grafen (1989) first proposed several statistical approaches
for comparative data that are now widely used. His standard
regression was a generalization of Felsenstein’s (1985) phylo-



Morphometrics of the Avian Small Intestine 543

genetically independent contrasts (IC) that used techniques of
generalized least squares (GLS). In GLS, multiple regression
can be performed in the usual way if the phylogenetic corre-
lations among residuals are specified. Grafen pointed out that
all GLS needs is a hypothesis about the variance-covariance
matrix of the error terms, �, that describes the pattern of re-
latedness among species. For example, if the evolution of a
character’s residuals (i.e., the deviations that remain after con-
trolling for relations with independent variables) is assumed to
follow a Brownian motion model with phylogenetic branch
lengths proportional to time, then it is possible to translate
directly from a phylogenetic tree to the expected variance-
covariance matrix of the residuals. Specifically, the branch
length distance from the root (basal node) of the tree to each
tip specifies the variance, whereas the distance from the root
to the last common ancestor of a pair of species specifies the
expected covariance of the residuals for those two species (for
a worked example, see Garland et al. 2005, p. 3,031). Although
Grafen recognized that his GLS approach was identical to Fel-
senstein’s IC approach, the link between them was only formally
made later (Hansen and Martins 1996; Garland and Ives 2000;
Rohlf 2001, 2006). In regression, the IC approach gives the
same results as the GLS approach but only when dependent
and independent variables are transformed by use of the same
phylogenetic tree (topology and branch lengths); when this is
not the case, IC and GLS will differ.

The translation of a phylogeny into a variance-covariance
matrix is easiest to conceptualize in univariate models where
the only interest is in the relationship among species in values
of a single trait. In a multivariate regression context, some care
is needed in interpreting this variance-covariance matrix. The
variance-covariance matrix used in regression analyses is the
variance-covariance matrix of �, not of the dependent variable
Y (Grafen 1989, 1992). Because values of Y depend not only
on � but also on the independent variable X, values of Y might
be phylogenetically related if values of X are, even when values
of � are independent. Conversely, values of Y might show no
phylogenetic resemblance even though values of � do if the
phylogenetic resemblance in the residuals is masked by the
values of X. Hansen and Orzack (2005) present a formal sta-
tistical model derived from an evolutionary process in which
phylogenetic correlation among � arises when values of Y im-
perfectly track changes in values of X through evolutionary
time. Alternatively, phylogenetically correlated residuals will
likely arise if one or more phylogenetically related traits affect
the dependent variable Y but are not included in the regression
model; unmeasured traits thus create phylogenetic correlations
in the unexplained residual variation in Y (Grafen 1989, p. 144;
A. R. Ives and T. Garland Jr., unpublished manuscript).

Moving beyond the standard regression, Grafen dealt with
the problem of unrecognized phylogeny, also known as soft
polytomies (Purvis and Garland 1993). Many biologists pre-
sume that speciation usually occurs in a dichotomous fashion
such that the true tree of life should be mainly dichotomous.
However, many estimates of phylogenetic trees (termed “work-

ing phylogenies” by Grafen) contain multifurcations that rep-
resent insufficient resolving power. If so, then this should be
accounted for. Grafen’s (1989) phylogenetic regression did this
in a particular way that will not be discussed here (see also
Grafen 1992). A simpler way of dealing with soft polytomies
involves subtraction of degrees of freedom when hypothesis
testing (Purvis and Garland 1993; Garland and Diaz-Uriarte
1999; see also Housworth and Martins 2001); although this
approach has been found to produce adequate results in sim-
ulation studies, it is nonetheless statistically ad hoc and should
be studied with simulations for each separate application. In
general, however, questions about uncertainty in the topology
of phylogenetic trees are treated separately from questions re-
garding the rate of evolutionary divergence among species on
a phylogenetic tree with a known topology (but see Huelsen-
beck and Rannala 2003).

Importantly, Grafen (1989, p. 124) noted that the positions
of the internal nodes of the phylogenetic tree proposed for
analysis (a working phylogeny) could be pulled or stretched,
relative to the root and terminal nodes (tips). A whole family
of relative branch lengths (as dictated by the value of a trans-
formation parameter, which he termed r) can then be com-
pared, and the best-fitting set of branches and the best-fitting
set of regression parameters can be simultaneously estimated
by ML or restricted maximum likelihood (REML). In this mode
of operation, it is possible that the best-fitting tree will be one
in which the internal nodes have been pulled very close to (or
even all the way to) the root, such that it is almost (or exactly)
a star. (The tips will remain contemporaneous only if the start-
ing tree had contemporaneous tips.) If so, then the estimated
regression parameters (and any associated statistical tests) will
be almost (or exactly) the same as those obtained from an OLS
analysis that ignores phylogenetic information (Grafen 1989;
Purvis and Garland 1993). Grafen called these procedures the
standard regression because they involved only standard sta-
tistical techniques, although the application to comparative data
was novel. He stated that “it is the least that can reasonably be
done when performing a regression on comparative data” (Gra-
fen 1989, p. 124).

The simultaneous estimation of a suitable branch length
transformation parameter is important (see also Martins and
Hansen 1997; Freckleton et al. 2002) because it means that one
can avoid overcorrecting or undercorrecting for covariances of
residuals that are related to descent with modification along a
hierarchical phylogenetic tree (phylogenetic signal sensu Blom-
berg et al. 2003). As noted by Felsenstein (1985, 1988) and
many others (e.g., review in Garland et al. 2005), various evo-
lutionary processes (such as rapid adaptation to changing en-
vironmental conditions) or even high measurement error (Ives
et al. 2007) could result in a comparative data set that is better
fit by a star phylogeny (see also Freckleton et al. 2003; Freck-
leton and Harvey 2006). Given that the results of conventional
and phylogenetic analyses often differ in important ways, it
thus seems natural to adjudicate between them by choosing a
model with a value of r (or other such transform) that is
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optimal as judged by ML or a similar criterion. To quote Grafen
(1992, p. 417), “It will rarely be sensible to assume in advance
that we know the strength of phylogeny.”

Grafen (1989, p. 146) noted that “the estimate of r has very
poor statistical properties. I believe that it is asymptotically
biased and that its sampling variance does not decrease to zero
asymptotically. … The poor statistical properties of the estimate
of r are not of direct concern, as r is essentially a nuisance
parameter. But it is important to realize that caution should
be taken if the estimate of r is interpreted in any way.” As
discussed below, although the ML estimates of r are likely to
be biased, other estimation methods (e.g., REML) may have
better statistical properties. Grafen’s (1989) standard regression
procedures did not become widely used, perhaps largely because
they were implemented in GLIM, although an SAS implemen-
tation is now available (http://users.ox.ac.uk/˜grafen/phylo/
index.html). In addition, r is not tied to a particular model of
(residual) character evolution, and some biologists prefer to
avoid strictly phenomenological statistical models.

Martins and Hansen (1997, p. 650) proposed a general ap-
proach for the statistical analysis of comparative data from an
evolutionary perspective. They stated that “our own approach
here might be viewed as an extension of Grafen’s method in
which we show how error structures can be more precisely
determined for a particular set of data, phylogenies, and evo-
lutionary question and incorporated using GLS procedures.”
They suggested that transformation parameters that could be
related to models of stabilizing selection, such as the OU model,
would enhance evolutionary interpretations (see also Butler et
al. 2000; Butler and King 2004). They also discussed various
more complicated statistical models, including incorporation
of measurement error (see Ives et al. 2007), that can be analyzed
by GLMs. For the more complicated models, they suggested
ML estimation procedures, as also used by Grafen (1989) for
his standard regression as well as the phylogenetic regression.
They also noted that GLS produces transformed residuals, and
these can be tested for normality, heteroscedasticity, and other
diagnostics, much like residuals from OLS (Grafen [1989] also
discussed some diagnostics for residuals).

Various models of evolution can be used to generate a
variance-covariance matrix from a phylogenetic tree, including
simple Brownian motion, Grafen’s (1989, 1992) r transform,
the OU transform (Hansen 1997; Martins and Hansen 1997;
Blomberg et al. 2003), Pagel’s (1997, 1999) l transform, and
the accelerating-decelerating (ACDC) transform derived by
Blomberg et al. (2003). As we previously described, Grafen’s r

transform stretches the variance-covariance matrix using a
mathematically convenient formula rather than a biologically
motivated one, allowing relatively greater or lesser weight to
the covariances dictating phylogenetic correlations among spe-
cies. The OU transform was motivated by the biological process
of stabilizing selection (Felsenstein 1988); the greater the force
of stabilizing selection, the less “memory” of ancestral trait
values and hence the lower covariances among species. Al-
though based on a biological model, the OU transform can

also be used without any reference to the biological process
that underlies its derivation. Pagel’s l effectively produces pro-
portional reductions in the covariances among species. This
transform can be derived by assuming that there is one com-
ponent of the residuals, �, that experiences Brownian motion
evolution, while another additive component shows no phy-
logenetic correlation (Housworth et al. 2004). Finally, the
ACDC transform (Blomberg et al. 2003) assumes that the rate
of evolution for a trait increases or decreases through time. For
phylogenies with contemporaneous tips, the ACDC and OU
transforms (as derived in Blomberg et al. 2003) are identical,
but they differ when tips are not contemporaneous.

Deriving a sensible terminology to discuss estimation under
these different transform models requires making a distinction
between statistical models and estimation techniques used to
fit models to data. All of these transform models are statistical
models in that they describe a statistical distribution and its
parameters. In contrast, OLS and GLS are estimation tech-
niques. Several authors refer to one or more of the transform
models as GLS models (or PGLS models, for phylogenetic GLS
models), although GLS is an estimation procedure. This is par-
ticularly confusing because GLS actually cannot be used to
estimate the parameters of these transform models because they
all contain parameters in the variance-covariance matrix that
must be estimated. To reduce confusion, our preference is to
refer to transform models as distinct from the estimation ap-
proaches that can be applied to them. We will break this con-
vention only when using the established monikers “OLS model”
and “GLS model” (i.e., the Brownian motion model) because
in these cases there is a one-to-one match between the structure
of the model and the appropriate estimation technique.

Estimation for all of the transform models can be performed
using ML or REML approaches. In addition, estimated GLS
can be used with Pagel’s l transform model, along with some
models that incorporate measurement error in the species’ val-
ues (Ives et al. 2007). Bayesian methods are also possible, but
in general the statistical and numerical problems arising in
phylogenetic analyses are simple enough that Bayesian methods
have no advantages.

Pagel (1997, 1999) used ML estimation for the analysis of
continuous-valued traits (as well as other types of traits) using
the l transform model but did not refer to Grafen’s (1989)
earlier work in this context. Freckleton et al.’s (2002) extension
of Pagel’s approach used a direct search to find the ML value
of l in combination with likelihood ratio tests to determine
whether l differed from 0 (a star phylogeny), 1 (the original
input tree), or even some other value that might be of a priori
interest. Freckleton et al. (2002) used simulations to compare
the error rates of l and Grafen’s r in distinguishing between
the OLS and GLS models. They concluded that l worked better
and so performed regression analyses on a large number of
comparative data sets using this transformation parameter.
They found that in 23 out of 26 phylogenies (88%), at least
one character showed significant phylogenetic correlation (i.e.,

). Several subsequent articles have used estimation of ll 1 0
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in multiple regression analyses, using either Pagel’s CONTIN-
UOUS program or routines in the R language (e.g., Gage and
Freckleton 2003; McKechnie et al. 2006; Duncan et al. 2007).

Blomberg et al. (2003) used a similar approach to test for
phylogenetic signal in univariate comparative data sets. Rather
than the l or r transformations, they used a simple version of
an OU model and also a new ACDC model of character evo-
lution, both of which were estimated by ML. In addition, they
developed a randomization test that can be implemented either
via independent contrasts or GLS methods. Consistent with
Freckleton et al. (2002), simulations showed that the tests had
good power for comparative data sets comprising 20 or more
species. For trees with 20 or more species, 49 of 53 (92%) traits
exhibited significant phylogenetic signal by the randomization
test. Rather than using likelihood ratio tests, Blomberg et al.
(2003) developed additional randomization procedures to test
whether the parameters for OU (d) or ACDC (g) transforms
differed significantly from 0 (no phylogenetic signal) or 1
(Brownian motion evolution). An advantage of randomization
tests is that they are generally robust to small sample sizes when
likelihood ratio tests may fail. On the basis of these procedures,
the null hypothesis that d or g was equal to 0 was rejected
( ) for 47 of 53 traits and for 49 of 53 traits, respectively.P ! 0.05

Statistical Documentation for MATLAB Program
Regressionv2.m

We performed all of the analyses in this article using a new
MATLAB (MathWorks 1996) program, Regressionv2.m, that
can perform multiple regression using OLS and GLS, as well
as the four transform models: Grafen’s r, Pagel’s l, OU (as
derived in Blomberg et al. 2003), and ACDC. Respectively, we
refer to these models as RegGrafen, RegPagel, RegOU, and
RegACDC. Because we generally prefer analyses based on mod-
els that have a clear biological interpretation, only the RegOU
model is used in the accompanying analyses of small intestine
morphometric traits. For simplicity, we will refer to the trans-
form parameter for all four models (r, l, d, and g) collectively
as v. The regression models for all of these transforms have the
form of equation (A1) but differ in the variance-covariance
matrix , where the elements of the variance-′ 2E{�� } p j V(v)
covariance matrix are for Grafen’s r, Pagel’s l, OU, and ACDC,
respectively,

rv p 1 � (1 � c ) ,ijij

v p lc (i ( j); v p c ,ij iiij ii

(c �c �2c ) 2cii jj ij ijd (1 � d )
v p , (A2)ij 2(1 � d )

�cij(1 � g )
v p ,ij �1(1 � g )

where cij is the ijth element of the starter (untransformed)

variance-covariance matrix derived under the Brownian motion
evolution assumption.

For the four transform models, Regressionv2.m uses REML
to estimate parameters. REML estimation is a variant of ML
estimation in which the likelihood function is partitioned into
components, allowing estimation of variance parameters in the
model, v, independently from the parameters involving means
(Patterson and Thompson 1971; Cooper and Thompson 1977;
Smyth and Verbyla 1996; Housworth et al. 2004). The estimates
of the regression parameters, bi, are just the GLS (or equivalently
ML) estimates conditional on the estimate of the variance pa-
rameter. Specifically, the marginal log-likelihood function from
which variance parameters are estimated is (Harville 1974)

N � p 1
2 ′L (j , v) p � ln (2p) � ln [det (X X)]R 2 2

1 1
2 ′ 2 �1� ln {det [j V(v)]} � ln (det {X [j V(v)] X}) (A3)

2 2

1 ′ 2 �1ˆ ˆ� (Y � Xb ) [j V(v)] (Y � Xb ),GLS GLS2

where v is the transform parameter, p is the number of re-
gression parameters in b, N is the number of species (tips of
the phylogenetic tree), and is the GLS estimate of the vectorb̂GLS

b containing parameters b0, b1, …, bp. The marginal log-
likelihood function can be concentrated to remove the term j2

(e.g., Judge et al. 1985), so the REML estimate of the transform
parameter can be obtained by maximizing the concentrated
marginal log-likelihood function

1 ′ �1ˆ ˆL (v) p �(N � p) ln (Y � Xb ) V(v) (Y � Xb )RC GLS GLS[ ]N � p

′ �1� ln {det [V(v)]} � ln {det [X V(v) X]}. (A4)

Across a wide range of statistical models, REML produces
less biased estimates of variance parameters than does ML,
and simulations (not presented here) show that the same
is true for the phylogenetic regression models analyzed by
Regressionv2.m.

Although REML has good estimation properties, it does not
directly give standard errors of the estimates. To obtain standard
errors of the regression coefficients, we used GLS formulas with
the variance-covariance matrix given with the REML estimate
of v. This ignores the uncertainty in the variance-covariance
matrix caused by the uncertainty in the estimate of v, although
generally this introduces little additional uncertainty in the es-
timates of regression coefficients beyond that given by GLS
formulas. Similarly, Regressionv2.m uses standard GLS for-
mulas to compute the t scores and F scores for regression
coefficients under the null hypothesis that they are 0.

For model comparision, we use ML approaches. The values
of the marginal log-likelihood function (A3) used in REML
can be used to compare fit of the variance components of
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models, v, in equation (A2). Nonetheless, they cannot be used
to compare the fit of models including coefficients (b0, b1, b2,
etc.), although values of the likelihood function obtained from
ML estimation can. The concentrated log-likelihood function
used to obtain ML estimates of the transform parameter v is

1 ′ �1ˆ ˆL (v) p �N ln (Y � Xb ) V(v) (Y � Xb )C GLS GLS[ ]N

� ln {det [V(v)]}. (A5)

This likelihood function can be used to test for the statistical
significance of the inclusion of parameters in nested models
using likelihood ratio tests. For comparing nonnested models
with different numbers of parameters (Burnham and Anderson
2002), we also compute the Akaike Information Criterion
(AIC), which equals �2 ln L(vML) � 2(no. parameters), where
L(vML) is the log likelihood at the ML estimates of v and j2:

N 1
2 2L(j , v) p � ln (2p) � ln {det [j V(v)]}

2 2

1 ′ 2 �1ˆ ˆ� (Y � Xb ) [j V(v)] (Y � Xb ). (A6)GLS GLS2

The AIC is becoming widely used in phylogenetically based
statistical methods (e.g., Butler and King 2004; McKechnie et
al. 2006; O’Meara et al. 2006; Boyle and Conway 2007; Chown
et al. 2007; Duncan et al. 2007).

Likelihood-based phylogenetic comparative methods can
have poor statistical properties when sample sizes are small
(e.g., Freckleton et al. 2002; Blomberg et al. 2003). Therefore,
Regressionv2.m incorporates bootstrap methods (Efron and
Tibshirani 1993) to obtain confidence intervals for all param-
eters, including the transform parameter v. Bootstrapping is
performed by resampling (with replacement) the transformed
residuals, given by

e p D(Y � Xb),

where D is the Cholesky decomposition of j2V(v). Other or-
thogonal decompositions of j2V(v) could be used (Housworth
et al. 2004), such as the singular-value decomposition, although
the Cholesky decomposition as implemented by MATLAB
maintains the ordering of decomposition axes in a more con-
venient fashion than other decompositions. Under the as-
sumption that the fitted model is correct, the transformed re-
siduals, e, are independent. For each resampled set of
transformed residuals, a bootstrap data set is reconstructed us-
ing the regression model. The bootstrap data set is then fit
using the model, with all parameters estimated using REML.
Repeating this procedure many times (2,000 is recommended
for statistical tests with ) produces a collection of pa-a p 0.05
rameter estimates, and the distribution of these estimates ap-
proximates the distribution of the REML parameter estimator.

For small sample sizes, the bootstrap confidence intervals and
other tests of statistical significance are the gold standard. Boot-
strapping also provides statistical diagnostics. For example, if
the mean of the bootstrap estimator for a parameter is different
from the parameter value estimated from the original data, this
indicates that the REML estimations are biased (see also Ives
et al. 2007).

Regressionv2.m also allows the user to identify interaction
terms and categorical variables. For categorical independent
variables (e.g., diet coded as 1–5 to represent omnivore, car-
nivore, herbivore, nectarivore, or frugivore, respectively) and
categorical interaction terms, the program automatically codes
dummy variables, and F values are provided to test the statistical
significance of inclusion of each categorical variable (i.e., all
dummy variables treated as a group). It is also possible to test
for significance of categorical variables using a likelihood ratio
test, and the results should be very close to those from F-tests
(e.g., see tables in this article). Regressionv2.m allows missing
values to be specified in the tip data matrix by entering “�9999”
or “NaN” (in MATLAB, ver. 6 and higher). When the program
encounters missing values, it automatically drops that species
from the analysis, removing the corresponding row and column
from the phylogenetic variance-covariance matrix. This is use-
ful, as in this article, when different dependent or independent
variables vary in sample size. One first constructs a phylogenetic
tree for the maximum number of species in the entire data set
and then creates the phylogenetic matrix from this full tree (see
main text for description of how this is done). Note that if the
branch lengths for the full phylogenetic tree have been specified
by some arbitrary method (e.g., setting all segments equal to
1.0, Pagel’s arbitrary method, Grafen’s [1989, fig. 2] arbitrary
method; see Garland et al. 1992, 2005), then they are not reset
to that method by Regressionv2.m. Resetting to such arbitrary
values would require that the user delete species manually from
the full tree and then resave it and re-create the phylogenetic
matrix.

In GLS, RegOU, and other models that include covariance
among residuals, we need to reiterate the caution given by Judge
et al. (1985, p. 31), that “the potential for misusing R2 is high.”
The formula that we use for R2 (eq. [2.3.16] in Judge et al.
1985) takes values between 0 and 1 and is monotonically related
to the F statistic used to test the null hypothesis that regression
slopes differ from 0. Nonetheless, because the residuals are not
orthogonal, it is difficult to ascribe portions of the explained
variation to different independent variables, and therefore we
do not report partial R2 values. Moreover, we remind readers
that the R2 values for OLS models are not comparable with
those from GLS, RegOU, and related models.
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Muñoz-Garcia A. and J.B. Williams. 2005. Basal metabolic rate
in carnivores is associated with diet after controlling for phy-
logeny. Physiol Biochem Zool 78:1039–1056.

O’Meara B.C., C. Ane, M.J. Sanderson, and P.C. Wainwright.



550 S. R. Lavin, W. H. Karasov, A. R. Ives, K. M. Middleton, and T. Garland Jr.

2006. Testing for different rates of continuous trait evolution
using likelihood. Evolution 60:922–933.

Pagel M. 1997. Inferring evolutionary processes from phylog-
enies. Zool Scr 26:331–348.

———. 1999. Inferring the historical patterns of biological
evolution. Nature 401:877–884.

Paradis E. and J. Claude. 2002. Analysis of comparative data
using generalized estimating equations. J Theor Biol 218:
175–185.

Paradis E., J. Claude, and K. Strimmer. 2004. APE: analyses of
phylogenetics and evolution in R language. Bioinformatics
20:289–290.

Patterson H.D. and R. Thompson. 1971. Recovery of inter-
block information when block sizes are unequal. Biometrika
58:545–564.

Rohlf F.J. 2001. Comparative methods for the analysis of con-
tinuous variables: geometric interpretations. Evolution 55:
2143–2160.

Sessions S.K. and A. Larson. 1987. Developmental correlates of
genome size in plethodontid salamanders and their impli-
cations for genome evolution. Evolution 41:1239–1251.

Smyth G.K. and A.P. Verbyla. 1996. A conditional likelihood
approach to residual maximum likelihood estimation in gen-
eralized linear models. J R Stat Soc B 58:565–572.


