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Abstract: Many fields of biology employ cross-species comparisons. However, 
because species descend with modification from common ancestors, and rates of 
evolution may vary among branches of an evolutionary tree, problems of 
nonindependence and nonidentical distributions may occur in comparative data 
sets. Several phylogenetically based statistical methods have been developed to 
deal with these issues, but two are most commonly used. Independent contrasts 
attempts to transform the data to meet the i.i.d. assumption of conventional 
statistical methods. Monte Carlo computer simulations attempt to produce 
phylogenetically informed null distributions of test statistics. A disadvantage of 
the former is its ultimate reliance on conventional distributional assumptions, 
whereas the latter may require excessive information on biological parameters 
that are rarely known. We propose a phylogenetic permutation method that is 
akin to the simulation approach but requires less biological input information. 
We show that the conventional, equally likely (EL) randomization model is a 
special case of our phylogenetic permutations (PP). An application of the method 
is presented to test the correlation between two traits with cross-species data. 
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1. Introduction 

Cross-species comparisons have a long and productive history in 
ecology, biogeography and phylogenetic studies (Brooks and McLennan 
1991; Harvey and Page1 1991; Eggleton and Vane-Wright 1994; Martins 
1996). However, the comparative analysis of observations gathered from 
multiple species presents a problem for conventional statistical methods by 
implicitly assuming that these observations are independent and identically 
distributed (i. i. d.) when computing a statistical test. These assumptions are 
rarely justified because comparative data are always affected by history 
(their genealogy, or phylogeny), thus making the observations 
nonindependent. Ecologists worlung with spatial data have been dealing 
with an analogous problem for decades. In the case of ecological data, the 
nonindependence among observations is the result of spatial autocorrelation, 
whereas phylogenetic autocorrelation is involved with cross-species data. In 
the phylogenetic case, the usual situation is to find positive autocorrelation: 
closely related species are more similar than distant species with respect to a 
certain trait. Regardless of the source of autocorrelation, the statistical 
problems are similar. Because data affected by autocorrelation are not 
independent (and potentially not identically distributed), conventional 
statistical analyses of such data may provide spurious results (e.g., inflated 
Type I error rates). The effect is similar to that caused by overestimating 
degrees of freedom, although the actual mechanism of the effect arises from 
incorrect partitioning of variances and covariances (Page1 1993; see also 
Garland, Midford, and Ives 1999). Phylogenetically correlated data also lead 
to problems in parameter estimation and prediction (e.g., Martins and 
Hansen 1997; Garland and Ives 2000). 

Several solutions to this problem have been proposed for cross- 
species comparisons (see recent reviews in Martins and Hansen 1996, 1997; 
Garland, Midford, and Ives 1999; Garland and Ives 2000). One of the most 
popular approaches is termed phylogenetically independent contrasts 
(Felsenstein 1985), which attempts to correct the data to remove the effect 
of phylogeny; in other words, transform quantitative data to create new 
values that are, in principle, independent and identically distributed. These 
values can then be used in conventional statistical procedures (see Garland, 
Harvey, and Ives 1992; Garland and Adolph 1994). The second approach, 
originally introduced by Martins and Garland (1991), is totally different. 
Instead of modifying the data to remove phylogenetic autocorrelation, the 
testing procedure is corrected to include the phylogenetic relationships in 
the statistical computations. This problem can be easily addressed with 
Monte Carlo simulations (Garland, Dickerman, Janis, and Jones 1993; 
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Reynolds and Lee 1996) in which the values of a trait are evolved along a 
phylogeny using a predetermined model of character evolution (e.g., 
Brownian motion). By repeating the process a large number of times for 
some fixed parameter computed from the actual data, or specified under the 
null hypothesis, one can easily obtain a null distribution of the reference 
statistic with which the actual one can be compared. 

We propose another option for correcting the testing procedure. This 
method can be used with qualitative or quantitative traits. It is based on a 
permutation (randomization) procedure that accounts for the phylogeny. We 
will show how one can compute a permutation test for autocorrelated data, 
when the independence assumption is not satisfied. We will discuss the 
rationale and describe how the randomization procedure based on 
phylogenetic permutations (hereafter referred to as PP) actually works. A 
general algorithm for computing permutation tests under this model will be 
presented and compared to the more common equally likely (EL) model. 
The method will finally be applied to a published cross-species comparison 
to illustrate how it compares with a conventional statistical analysis. 

2. Randomizations under the EL Model 

Since R. A. Fisher (1935, Section 21), permutation tests have been 
used extensively in ecological and evolutionary studies (e.g., Sokal 1979; 
Dietz 1983; Douglas and Endler 1982; Dow and Cheverud 1985; Dow, 
Cheverud, and Friedlander 1987; Crowley 1992, pp. 407-409). The 
procedure is straightforward (but inadequate in the case of comparative 
data). Consider the case of testing for a correlation between two traits across 
a series of species. (a) First, one computes a statistic of interest based on 
actual observed values. (b) Then, the values of one trait are permuted while 
keeping the other fixed (by so doing, the correlation structure between traits 
is broken). (c) The same statistic as in Step 1 is computed for the permuted 
data. (d) This process (Steps b and c) is repeated a large number of times to 
generate a distribution of the test statistic. (e) The probability of the data 
under the null hypothesis is obtained by counting the number of test 
statistics (e.g., correlation values) for permuted sets of data which are larger 
than or equal to the original value of the statistic for the unpermuted data. 

In theory, all possible n! permutations among n species could be 
considered, but in practice, these tests are usually based on a large subset of 
permutations and are termed "sampled" randomization tests. Usually, the 
sampling universe is based on the EL model, which considers all 
permutations as equally likely, every possible permutation order of the trait 
values having the same probability (Iln!). However, Oden and Sokal (1992) 
have shown that in specific cases of permutation tests for distance matrices 
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(Mantel 1967; Hubert and Schultz 1976), the EL assumption can be 
inadequate. With simulations, Oden and Sokal observed that some of the 
methods designed to test for the partial correlation among three matrices 
(Dow and Cheverud 1985; Hubert 1985; Manly 1986; Smouse, Long, and 
Sokal 1986) produced inflated Type I error rates (see also Oden 1992). In 
particular, this problem can occur when the observations are autocorrelated. 

To account for this problem, a modified permutation procedure is 
required. We want values for closely related species to be more likely 
permuted with each other, rather than being permuted equiprobably. One 
partial solution is to randomize the values within certain blocks, 
corresponding to one or more taxonomic levels (e.g., orders, families, 
genera), while preventing permutations across blocks (see Biondini, Mielke, 
and Berry 1988; Harvey and Page1 1991, pp. 152-153). This approach is not 
general, however, because it does not account for the hierarchical 
phylogenetic relationships within blocks (taxa), nor for relationships of the 
blocks with each other. To be general, we require a completely specified 
phylogenetic tree, which in many cases will be entirely bifurcating and may 
have arbitrary branch lengths. That tree could then be used to compute a 
randomization test with phylogenetic permutations (PP). 

3. Randomizations under the PP Model 

Any phylogenetic tree can be uniquely depicted in the form of a path- 
length matrix containing the painvise distances among all species (Hartigan 
1967; Buneman 197 1; Lapointe and Legendre 199 1). The basic idea of the 
method is to convert the path-length phylogenetic distance matrix to a 
permutation probability (or transition) matrix P. This matrix gives for each 
species i (row) the probability p..  of moving its trait value to a different Y 
species j (column), including itself (pii). Under the EL model, all 
probabilities for any given row would equal lln, including self-permutations 
(i.e., transition probabilities to move the value from species i to species i). In 
the case of phylogenetic permutations (PP), this condition will not hold, 
however, and the transition probability matrix P will meet a different set of 
properties: 

1. All transition probabilities p . . should be positive. Y 
2. All transition probabilities on any row i must sum to one. 
3. The transition probabil.ities p..  should be inversely and monotonically Y 

related to the path-length distances d . .  for any given species (row) i. Y 
4. The self-permutation pii should always represent the largest transition 

probability for any given species (row) i. 
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5. The self-permutation for species that lack close relatives should be 
larger than for species with close relatives in the phylogenetic tree. 

Although the first four properties seem obvious, the last one deserves an 
explanation. That property states that the probability of self-permutations 
will not be identical for all species and that the more distant and isolated a 
species is from the other species, the larger its self-permutation probability 
(i.e., the probability to remain in the same position) will be. This property 
differentiates species on long terminal branches from species on short 
terminal branches, as a Brownian motion model does in the case of Monte 
Carlo simulations (Martins and Garland 1991). 

Obviously, the phylogenetic permutations depend on the path-length 
distances in D, and the transition probabilities in P can be obtained in 
several ways, so long as all properties are satisfied. We will now propose a 
simple procedure for computing a class of transition probability matrices 
from path-length distances (see Appendix). The method first proceeds by 
scaling all distances (d..) between zero and one, by dividing each path- 

tl 
length by the largest distance (d,,) in the matrix. The scaled distances 
( dl; ) are then converted to similarities (s ) ,  where s .  = k - dl; , and k is any 

'J 'J 
positive number larger than or equal to one. The similarities are finally 
transformed into transition probabilities (pg )  by dividing each similarity 
value by its corresponding row total such that all marginals sum to one (see 
Property 2). These so-called "initial transition probabilities" that satisfy all 
properties are used for the PP algorithm. Depending on the value of 
parameter k, different matrices P will obtained, however. The larger k is, the 
more similar the probabilities in P will be, such that when k = m , P becomes 
the EL matrix. Therefore, the EL model is a special case of the PP model 
with all transition probabilities equal, and parameter k defines how far the 
transition matrix P is from the EL model. 

4. The PP Algorithm 

Unlike a standard permutation test for which the trait values for 
different species would be exchanged entirely at random and equiprobably 
(see Edgington 1995, pp. 3-5; Manly 1997, pp. 3-13), a transition probability 
matrix is used to guide the phylogenetic permutations. In particular, the 
procedure takes as input the trait value of one species at a time and returns a 
new address for it, until trait values for all species have been permuted. The 
major difference between the EL and the PP model is that values for 
different species are permuted with different probabilities. The detailed 
algorithm is as follows: 
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Step 1. Pick one species at random from the set of n species to be 
permuted. 

Step 2. Assign a new position to this species according to the initial 
transition probability matrix. 

Step 3. Pick a new object not already assigned to a position. 
Step 4. Assign a new position to this species (one not already occupied by 

another species) according to the transition probabilities; to do so, 
the transition matrix must be reduced by deleting one row (the 
previously selected species) and one column (the new position of 
that species), and new probabilities must be computed so that they 
all sum to one. 

Step 5. Repeat Steps 3 and 4 until only one species remains, and assign the 
trait values for that last species to the only position not yet 
occupied. 

Using the EL model, the probability of any permutation (i.e., going 
from ABC to BAC) would be computed as lln! - but with the PP model, 
the probability of this same permutation is given by the product of the 
(successively computed) probabilities to move from A to B, from B to A, 
and from C to C. It is theoretically possible to compute the probabilities of 
all permutation orders with such a procedure; they should sum to one. 
However, because there exist several ways to obtain a particular order (e.g., 
by first moving from C to C, then from A to B, and from B to A) and 
because these may not have equal probabilities, it rapidly becomes 
intractable to compute realized or "final transition probabilities" as the 
number of species increases. These values are obviously obtained 
asymptotically by the PP algorithm when a large number of iterations are 
performed (see Appendix), and statistical tests can be computed to verify 
that they do not indeed differ statistically from the final transition 
probabilities. 

5. Application of the PP Model 

Huey and Bennett (1987) studied the thermal biology of 12 species of 
Australian scincid lizards, seelung to determine whether various aspects 
of thermal biology had evolved in a positively correlated fashion. Those 
authors measured four traits, but we will consider only two here: preferred 
body temperatures in a thermal gradient (a behavioral trait) and the optimal 
temperature for sprint running on a photocell-timed racetrack (a 
physiological trait). The authors hypothesized that lizards preferring high 
temperatures should also run fastest at high temperatures. The ordinary 
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Pearson product-moment correlation coefficient between preferred and 
optimal body temperatures (see Figure 1) is 0.5845; the conventional, one- 
tailed critical value for a = 0.05 is 0.497. Based on these values, the 
correlation would be considered significant a tp  = 0.0230. 

To establish a conventional null distribution of the Pearson 
correlation coefficient, for comparison with the permutation distributions, 
we used the PDSIMUL program (Garland et al. 1993) on a star phylogeny 
(no hierarchical structure). Using PDSIMUL on a star phylogeny is 
equivalent to drawing, for each species, a single pseudorandom number 
from a bivariate normal distribution of constant variance, and yields a 
distribution of correlation coefficients that is not significantly different from 
the conventional tables. For each of 5000 simulated data sets, we used the 
PDTIPS program (both programs are available from http://www.wisc.edu/ 
zoology/faculty/fac/ GarlandPDAP.htrn1) to compute the Pearson product- 
moment correlation coefficient. 

The new PDRANDOM program (also available from T.G.) was used 
to do the permutation tests. First, we performed equally likely permutations 
and computed correlations with PDTIPS. We then compared their 
distributions with those for data simulated along a star phylogeny to detect 
significant differences, if any. To perform phylogenetic permutations, we 
used the phylogeny shown in Figure 1 to compute initial transition 
probabilities. For each set of 5000 permutations, we allowed the parameter k 
to vary. As is the convention in permutation tests, the original, unpermuted 
data were always included as one of the 5000 sets. 

Table 1 shows the final transition probabilities of phylogenetic 
permutations under an EL model (with k = a) and a PP model with k 
varying from 2.0 to 1.0. Under an EL model, the value for each species is 
permuted to each position 8.3% (1112) of the time, on average. Under all PP 
models shown, permutations occur unequally, depending on the value of 
parameter k. All final transition probabilities satisfy the five properties of 
the PP method as listed above, however. 

Table 2 summarizes information on the distributions of the correlation 
coefficient computed from the simulated or permuted data sets. We used a t- 
test to compare means of the distributions and a Kolmogorov-Smirnov (KS) 
test to compare the distributions more generally. As expected, Monte Carlo 
simulations along a star phylogeny produced distributions of correlation 
coefficients that were virtually identical to the conventional ones. We next 
compared distributions of correlation coefficients under EL and PP 
permutations. With k = 2.0, the PP distributions of correlation values did not 
differ significantly from that generated under the EL model. With k = 1.1, 
however, the PP distributions differed significantly. Correspondingly, the 
significance levels were reduced (p-values were increased). With k = 1 .O1 or 



Millions of Years Before Present 

Cu Ctenorus uber 

Ct  Ctenotus taeniolatus 

Cr Ctenotus regius 

S k Sphenomorphus kosciuskoi 

S t  Sphenomo?phus tympanum 

S q Sphenontorphus quoyi 

Ef Eremiascincus fasciolatus 

H p  Hemiergisperonii 

Hd Hemiergis decresiensis 

Lb Leiolopisma entrecusfeauxii B 

La Leiolopisma entrecasteauxii A 

E w Egernia bvhitii 

Figure 1. Hypothesized phylogenetic relationships and thermal data (OC) for 12 species of Australian scincid lizards (from Fig. 1 and Table 1 of 
Garland, Huey, and Bennett 1991). To is optimal body temperature for sprint running, Tp is preferred body temperature. 
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Table 1.  Examples of transition probabilities computed from the phylogenetic tree in Fig 1 a. 

Equally Likely (EL) Permutations 
ew la lb hd hp ef sq st sk cr ct cu 

ew - 8.9 8.3 8.1 7.2 8.1 8.7 8.5 9.1 8.1 8.7 7.9 8.5 

la 8.1 7.5 8.6 8.8 8.2 8.6 8.3 8.0 8.5 8.6 8.9 7.8 

lb 8.1 8.7 7.9 8.6 8.7 8.1 8.0 8.2 8.6 8.0 8.3 8.8 

hd 8.1 8.5 8.4 8.5 8.7 7.8 7.8 8.8 8.5 8.3 8.2 8.4 

hp 8.2 8.4 8.1 8.9 7.9 9.0 8.3 8.4 8.3 8.2 8.1 8.2 

e f 8.1 7.8 8.0 8.8 8.8 8.1 8.9 7.9 8.1 8.9 8.2 8.3 

Sq 7.9 8.2 8.1 7.7 9.1 8.9 9.3 8.3 8.4 7.2 8.2 8.7 
st 8.9 8.4 8.6 8.0 8.1 8.2 7.9 8.4 8.7 8.6 8.4 7.9 

sk 8.4 9.6 7.9 8.1 8.6 7.7 8.7 8.2 75 9.2 8.3 7.7 

cr 8.1 8.5 8.9 8.3 8.2 8.1 8.2 8.3 8.5 8.4 8.1 8.5 

ct 8.4 8.0 8.9 8.3 7.8 8.2 8.0 8.3 8.1 8.3 8.9 8.7 

cu 8.7 8.1 8.5 8.8 7.8 8.5 8.1 8.2 8.6 7.6 8.6 8.4 
Phylogenetic Permutations (PP) with k = 2.0 

ew la lb hd hp ef sq st sk cr ct cu 

ew 18.6 10.1 9.8 6.9 6.6 6.8 6.6 7.0 7.1 7.0 7.0 6.6 

la 9.8 15.4 16.1 6.5 6.4 6.2 6.4 6.6 7.4 6.4 6.5 6.5 

Ib 9.9 15.5 14.4 6.9 7.1 6.8 6.9 6.8 6.0 7.1 6.5 6.1 

hd 7.6 6.4 6.3 9.2 9.5 9.8 8.4 8.3 8.0 8.7 8.8 9.0 

hp 6.1 7.7 6.5 10.3 9.0 8.5 9.2 8.6 8.4 8.5 8.6 8.5 

ef 6.6 6.4 6.6 9.2 9.0 9.3 9.6 8.7 8.3 8.8 9.3 8.4 

Sq 6.8 6.0 6.8 8.6 8.6 9.1 8.9 8.9 10.1 8.8 8.2 9.2 

st 6.8 6.3 6.9 8.4 9.4 8.9 9.3 9.5 9.0 8.7 8.8 7.8 

sk 6.8 6.4 6.9 8.5 8.7 8.7 9.0 9.3 9.4 8.5 8.5 9.1 

cr 7.3 6.6 6.6 8.7 7.9 8.7 8.7 8.3 9.2 9.0 9.6 9.5 

ct 7.3 6.7 6.3 8.6 9.0 8.5 8.3 9.0 8.6 9.0 9.4 9.4 

cu 6.5 6.5 6.8 8.2 8.7 8.7 8.8 9.0 8.6 9.5 8.8 9.9 

(Table 1 continues on next page) 

k = 1.0 (in which case permutations across the root of the phylogeny are 
precluded; see bottom of Table I),  distributions of correlations under PP 
models differed even more from the EL distributions. Significance levels 
were reduced further, and in both cases the Pearson correlation would not be 
declared significant at a = 0.05. 

In summary, as shown in Table 1, the PP algorithm implemented in 
the PDRANDOM program succeeds in producing randomizations that 
reflect phylogenetic structure and satisfy the above-listed desirable 
properties of the method. Depending on the value of the parameter k, distri- 
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Table 1 (continued) 

Phylogenetic Permutations (PP) with k = 1.1 
ew la lb hd hp e f  sq st sk cr ct cu 

ew 53.9 8.4 8.2 3.1 3.8 3.4 2.9 3.5 3.3 3.1 3.1 3.3 
la 8.3 33.4 34.5 2.5 2.4 2.6 2.7 2.6 2.4 2.7 2.8 3.1 
lb 7.9 34.3 34.1 2.7 2.8 2.8 2.9 2.4 2.6 2.5 2.4 2.6 

Phylogenetic Permutations (PP) with k = 1 .O1 
ew la lb hd hp e f  sq st sk cr ct cu 

ew 81.8 6.4 6.6 0.8 0.6 0.6 0.3 0.6 0.5 0.7 0.6 0.5 

la 7.1 43.0 45.3 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.4 0.5 

lb 5.5 46.7 43.9 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.6 0.4 

hd 0.7 0.5 0.5 11.8 13.0 10.1 10.6 10.3 10.7 10.9 10.9 10.2 

hp 0.6 0.5 0.5 12.2 12.6 10.3 11.3 10.3 11.1 9.6 10.5 10.5 

e f  0.6 0.6 0.4 10.4 10.2 12.4 11.2 11.1 10.7 11.4 10.4 10.6 

Sq 0.7 0.4 0.4 10.3 10.8 11.2 11.9 12.1 11.1 11.0 9.9 10.2 

st 0.9 0.5 0.4 10.8 10.1 11.8 10.9 11.4 12.2 10.2 11.1 9.9 

sk 0.5 0.3 0.6 9.5 10.0 12.7 11.1 11.8 11.8 10.5 10.4 10.9 

cr 0.4 0.4 0.7 10.8 10.5 9.8 10.7 11.1 10.6 12.1 11.4 11.4 

ct 0.5 0.4 0.4 11.1 10.8 9.6 10.7 10.4 10.4 11.5 11.7 12.4 
cu 0.6 0.5 0.4 11.4 10.5 10.6 10.4 10.1 9.9 11.1 12.1 12.5 

(Table 1 continues on next page) 

butions of the Pearson correlation coefficient computed from the permuted 
data sets differ significantly from those computed for equally likely (EL) 
permutations (Table 2). For the real data set shown in Figure 1, the choice 
of k has an important effect on the results: depending on the value of k, the 
correlation would be judged not statistically significant at a = 0.05, 
whereas it would be judged significant under an EL permutation model. 
This pattern is consistent with the findings of Garland, Huey, and Bennett 
(1991); phylogenetic analyses using either independent contrasts or Monte 
Carlo computer simulations both failed to reject the null hypothesis. 
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Table 1 (continued) 

Phylogenetic Permutations (PP) with k = 1.0 
ew la Ib hd hp ef sq st sk cr ct cu 

a Rows are source tips, columns are destinations. 5000 permutations were performed: 
values are final transition probabilities for trait 1. Self-permutations are underlined. 

6. Discussion 

In this paper, we have proposed a new phylogenetic permutation 
method to analyze cross-species data while accounting for phylogenetic 
nonindependence. The phylogenetic permutation (PP) procedure is a 
generalization of the equally likely (EL) model used in standard 
randomization tests (Oden and Sokal 1992). The main difference between 
the PP and EL models is the permutation procedure used to compute the 
probability of the data under the null hypothesis. Thus, our method can 
correct for the inflated Type I errors that occur when phylogenetically 
nonindependent observations are analyzed with conventional statistical 
methods. Note, however, that the PP procedure does not correct for any bias 
in the estimation of statistical parameters (e.g., the slope of a regression). 
Other approaches, such as independent contrasts (Felsenstein 1985) or 
generalized least squares (Grafen 1989; Martins and Hansen 1997; Garland 
and Ives 2000), can be used to improve parameter estimation per se, and the 
PP procedure (like Monte Carlo simulations, Martins and Garland 1991; 
Garland et al. 1993; Reynolds and Lee 1996) could be used in combination 
with these methods. Future studies will be required to compare the statistical 
properties of the PP procedure with those of Monte Carlo simulations and 
other comparative methods for cross-species data. 
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Table 2. Summary statistics for distributions of correlation coefficientsa. 

Mean ---------------- Percentiles ------------- 
k r 2.5 5 95 97.5 b 

Conventional Test : 0.497 0.576 0.0230 

Phylogenetic Permutations: 2,00d 0.009 -0.547 -0.477 0.509 0.596 0.0284 

1,10e 0.047 -0.535 -0.463 0.559 0.630 0.0384 

1.01 0.094 -0.485 -0.414 0.608 0.663 0.0636 

1.00 0.108 -0.466 -0.406 0.620 0.682 0.0766 

a PDSIMUL (Garland et al. 1993) was used to perform Monte Carlo simulations; 
PDRANDOM (this paper) was used to perform permutations (see Table 1 for final transition 
probabilities). In both cases, PDTIPS was used to analyze the data. 5000 permutations were 
performed. 95th percentiles are underlined as these values would be used to test (one-tailed) 
against the null hypotheses for a = 0.05. The correlation for the real data set (shown in Fig. 1) 
was 0.5845. 

p = number of randomized (or simulated) correlation coefficients that are greater than or 
equal to the real one, divided by 5000. Note that PDRANDOM includes the real data set as 
the first one in its output (*.RND) file. 

Distributions do not differ significantly: t = -0.42, d.f. = 9,998, 2-tailedp = 0.673 and K-S Z 
= 0.610, 2-tailedp = 0.851. 

Distributions do not differ significantly from distribution for EL Permutations: t = -1.27, 2- 
tailedp = 0.203 and K-S Z = 1.130, 2-tailedp = 0.155. 

Distributions differ significantly from distribution for EL Permutations: (Levene's test for 
unequal variances F = 5 . 5 0 , ~  = 0.019; t = -7.51, unequal variance d.f. = 9,989.52, 2-tailed p 
= < 0.0005; K-S Z = 3.630, 2-tailedp < 0.0005). 

Phylogenetic permutations represent models that can be applied to a 
wide range of problems. Indeed, our approach is more general than most 
other tests designed for correcting Type I error in comparative studies. 
Unlike the independent contrasts method, it is not the trait values themselves 
that are changed with our procedure, but the positions of the trait values at 
the "leaves" (tips) of a phylogenetic tree. Thus, phylogenetic permutations 
can be performed with any kind of data, qualitative as well as quantitative. 
Also, because prior information about various biological parameters, such as 
limits to trait evolution (Garland et al. 1993; Reynolds and Lee 1996), is not 
required, phylogenetic permutations are easier to implement than 
phylogenetic simulations. In our procedure, the only information required, 
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apart from the trait values, is an estimate of the phylogeny, from which a 
transition matrix P can be computed. We proposed a method to obtain P 
from a matrix D of path-length distances, but any matrix containing initial 
transition probabilities could be used to permute the data. Similarly, the 
parameter k can be varied to assess the sensitivity of test data to different 
levels of phylogenetic permutations, including the EL model (k = LO). As 
we have shown in the example (Table I), the outcome of the test can be 
greatly affected by this value k. An interesting area for future work would be 
to determine if and how different values of k relate to different evolutionary 
models (see Martins and Hansen 1997). An equally important area would be 
the comparison of the statistical properties of alternative methods for 
computing matrix P (e.g., taking the inverse of path-length distances as 
initial transition probabilities). 

Limited or constrained permutations can also be performed with the 
PP procedure to assess any conditional hypothesis. For instance, one could 
prevent the values for one group of species from changing positions with 
another group by setting the relevant values in P to zero; this strategy would 
create two blocks of species, allowing permutations to be performed within 
each group, but not among them (e.g., see Table 2, for k = 1.0). Similarly, 
one can force a species to remain in its original position to control the effect 
of that particular species (or a few species) on the outcome of the test; 
practically, this procedure is done by setting the self-permutation probability 
to one for the selected species, and all other probabilities in that row to zero. 
The flexibility of our procedure thus allows the user to address the statistical 
implications of specific phylogenetic hypotheses. For example, a stepwise 
approach could be performed by first computing a global test allowing all 
permutations, followed by a posteriori testing that would prevent the 
permutations among some predetermined groups. So long as a 
corresponding transition matrix P can be obtained, permutations may be 
performed in accordance with any given model. A final generalization of our 
approach is the possibility of using different transition matrices for different 
traits. The EL model is a special case, which always uses the same matrix 
for each trait, or only permutes a single trait (which is functionally 
equivalent). 

When several competing phylogenies are available for a given set of 
species (see Kirsch and Lapointe 1997), phylogenetic permutations can be 
used to compare the outcome of the tests computed with different transition 
matrices. However, when the phylogeny is incomplete or unknown, this 
randomization of the trait positions on a tree can be combined with some 
other randomization methods for trees themselves. For example, one could 
generate a series of trees with random topologies and randomly assigned 
branch (edge) lengths. Then, either phylogenetic permutations or simula- 
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tions (Losos 1994; Abouheif 1998) could be applied to each phylogeny to 
assess the generality of the statistical outcome (see also Blomberg 2000). 
When the topology of the phylogeny is known, but actual branch lengths are 
unknown, a transition probability matrix satisfying topological relationships 
only can also be computed. To do so, one may use either path-length 
distances with arbitrary branch lengths, such as all branch lengths set to be 
equal (for one of many alternatives, see Grafen 1989), or simply count the 
number of nodes separating two species (for other possibilities, see Podani 
and Dickinson 1984; Podani 2000). When using topological distances, the 
transition matrices for each trait in an analysis are necessarily the same. 
When using path-length distances, however, they need not be. Thus, we 
could use different sets of branch lengths to derive the transition matrices 
for different traits as is often done with independent contrasts (e.g., see 
Bonine and Garland 1999). 

Although originally motivated by the problem of phylogenetic 
correlation, our procedures can also be applied to other types of 
autocorrelation. For spatially autocorrelated data (Clifford, Richardson, and 
HCmon 1989; Legendre 1993), a permutation model could be implemented 
according to the geographic distances among the various localities at which 
species have been sampled. The rationale in this particular case would be 
that contiguous sampling sites are more likely to share the same species than 
distant sites (positive autocorrelation), or the opposite (negative 
autocorrelation, perhaps caused by competition). The same procedure can be 
used with time series in which a permutation matrix P representing an 
autoregressive model would represent the different times at which species 
were collected. In that case, successive sampling dates will be more likely to 
be permuted than distant ones. Also, it is possible to include more than one 
P matrix in the analyses to permute species according to competing models 
representing different sources of autocorrelation (Dutilleul and Potvin 
1995). 

Appendix: Computation of Final Transition Probabilities 

Consider the simple case of the smallest possible tree with three leaves. 

A B C  
A B C  

A 0.0 3.0 6.0 
D =  B 3.0 0.0 6.0 

C 6.0 6.0 0.0 
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The initial transition probability matrix P is obtained from the 
corresponding path-length distance matrix D, with k = 2.0 (see Section 3). 

To compute the realized transition probabilities for each pair of 
species, we first need to compute the probability of each order (ABC, ACB, 
BAC, BCA, CAB, and CBA) and thus require the initial transition matrix 
and the reduced transition matrices computed after each permutation. For 
simplicity, first consider the probability of obtaining order ABC (i.e., A 
moves to A, B to B, and C to C). We get from P that the probability of 
moving from A to A (i.e., pAA) is 419 (0.444). After reduction, we obtain that 
pBB is 213 (0.667), and finally pcc is obviously 1.000. Thus, the probability 
of obtaining the order ABC is 419 x 213 x 1 = 8/27 (0.296). 

As another example, consider the order ACB. We need the values 
pAA, pBC, and pcB to do the computations. pAA is again 419 (0.444). The next 
transition probability (pBC) is obtained from the reduced matrix and equals 
113 (0.333). pcB is equal to 1.000. Thus, the probability of the order ACB is 
given by: 419 x 113 x 1 = 4/27 (0.148). However, there are six 
distinguishable ways of getting this order, each depending on the order in 
which the species (rows) are selected. In the example presented above, the 
selection order of the species was ABC and the permutation result was 
ACB. Now, what if we had picked species C first, then B, and finally A? 
That is, we want to compute the probability or getting the permutation order 
ACB by considering the selection order CBA. In this case, we find that ACB 
is obtained with probability 114 x 215 x 1 = 1/10 (0.100). This value differs 
fi-om the 4/27 (0.148) we obtained with the selection order ABC. That 
demonstration implies that all possible selection orders must be considered 
to compute the probability of a given permutation order. 

Here are the frequencies of each possible permutation order (rows) 
for a given selection order (columns). The sum of the columns represents 
the cumulative frequency for a given selection order (all equal to one), 
whereas the sum of the rows represent the cumulative fi-equency for each 
permutation order. The probabilities of permutation orders (relative 
frequencies) are also provided for each row: 
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ABC 
ABC 8/27 
ACB 4/27 
BAC 115 
BCA 212 1 
CAB 211 5 
CBA 8/63 
TOTAL 1.00 

ACB 
8/27 
4/27 
219 
119 
119 
1 19 
1 .oo 

BAC 
812 7 
8/63 
115 

2/15 
212 1 
4/27 
1 .oo 

BCA 
8/27 
1 19 
219 
119 
119 

4/27 
1 .oo 

CAB 
217 
116 

3/14 
1/12 
3/20 
1/10 
1 .oo 

CBA TOTAL PROB 
217 1.7566 0.2928 
1/10 0.8011 0.1335 
3/14 1.2730 0.2122 
3/20 0.6841 0.1140 
1/12 0.6841 0.1140 
116 0.8011 0.1335 
1 .oo 

The final transition probability matrix from species i to j is obtained by 
adding the relevant probabilities in the permutation order matrix. For 
example, pAc is computed as 0.1140 + 0.1335. The complete matrix is thus: 

Given this consideration, it becomes cumbersome to compute final 
transition probabilities, because we first need to compute permutation order 
probabilities, which are themselves affected by selection orders. It can be 
done for such small matrices, as we have shown here. However, this 
procedure is practically impossible for larger matrices. Nevertheless, the 
algorithm we are using will asymptotically recover the correct probabilities. 
Indeed, with 5000 permutations, we have obtained the following empirical 
results that approach the expected probability values. These observed 
permutations satisfy all five properties of the PP algorithm (see Section 3). 
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