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Kelly SA, Nehrenberg DL, Hua K, Garland T Jr, Pomp D.
Quantitative genomics of voluntary exercise in mice: transcrip-
tional analysis and mapping of expression QTL in muscle. Physiol
Genomics 46: 593– 601, 2014. First published June 17, 2014;
doi:10.1152/physiolgenomics.00023.2014.—Motivation and ability
both underlie voluntary exercise, each with a potentially unique
genetic architecture. Muscle structure and function are one of many
morphological and physiological systems acting to simultaneously
determine exercise ability. We generated a large (n � 815) advanced
intercross line of mice (G4) derived from a line selectively bred for
increased wheel running (high runner) and the C57BL/6J inbred
strain. We previously mapped quantitative trait loci (QTL) contribut-
ing to voluntary exercise, body composition, and changes in body
composition as a result of exercise. Using brain tissue in a subset of
the G4 (n � 244), we have also previously reported expression QTL
(eQTL) colocalizing with the QTL for the higher-level phenotypes.
Here, we examined the transcriptional landscape of hind limb muscle
tissue via global mRNA expression profiles. Correlations revealed an
�1,168% increase in significant relationships between muscle tran-
script expression levels and the same exercise and body composition
phenotypes examined previously in the brain. The exercise trait most
often significantly correlated with gene expression in the brain was
running duration while in the muscle it was maximum running speed.
This difference may indicate that time spent engaging in exercise
behavior may be more influenced by central (neurobiological) mech-
anisms, while intensity of exercise may be largely controlled by
peripheral mechanisms. Additionally, we used subsets of cis-acting
eQTL, colocalizing with QTL, to identify candidate genes based on
both positional and functional evidence. We discuss three plausible
candidate genes (Insig2, Prcp, Sparc) and their potential regulatory
role.

adiposity; body weight; eQTL; experimental evolution; wheel running

THE PREDISPOSITION TO ENGAGE in voluntary activity is variable
among humans and rodents and simultaneously influenced by
genetics, the environment, and gene-by-environment interac-
tions (27). Although voluntary exercise is exceedingly com-
plex, it is hypothesized that some combination of both ability
and motivation play an integral role in regulating the level of
activity among individuals, with both of these components
having a complex underlying genetic architecture (15).

Neurobiological investigations aimed at uncovering the mo-
tivational aspects of voluntary exercise have been discussed
previously (see Ref. 26 and references therein). Here we focus
on studies chronicling the variation in ability and trainability
(broadly characterized as exercise sciences or exercise physi-
ology). One major focus of exercise physiology is uncovering
the mechanistic role of gene function and regulation in exercise

performance (for a historical perspective see Ref. 5). For
example, a total of 214 autosomal genes, seven loci on the X
chromosome, and 18 mitochondrial genes were reported as
influencing “physical performance” and “health-related fit-
ness” phenotypes in humans (see Ref. 6, 2006–2007 update).
This number has almost certainly increased in the subsequent
years (e.g., Ref. 34). The performance phenotypes included in
Ref. 6’s “human gene map” consist of “cardiorespiratory endur-
ance,” “elite endurance athlete status,” “muscle strength,” “other
muscle performance traits,” and “exercise intolerance of variable
degrees.” The physical fitness traits are grouped into hemody-
namic traits including exercise heart rate, blood pressure, and
heart morphology; anthropometry and body composition; in-
sulin and glucose metabolism; and blood lipid, lipoprotein, and
hemostatic factors (6). Many, if not all, of the traits listed
above would be hypothesized to affect the ability to engage in
physical activity.

Rodent studies have also demonstrated a genetic basis for
individual variation in exercise ability. Importantly, the trans-
lational nature of rodent wheel running to human health has
been extensively discussed elsewhere (see Refs. 15, 27, and
references therein), and we believe that voluntary wheel run-
ning appropriately models voluntary exercise in human popu-
lations, a complex behavior simultaneously affected by central
and peripheral mechanisms. Selective breeding for elevated
endurance capacity during forced treadmill running in rats has
resulted in greater skeletal muscle capillarity, muscle oxidative
enzyme activities, V̇O2max, and peripheral oxygen transport and
utilization (see Ref. 21 and references therein). Replicated
artificial selection for increased voluntary wheel-running be-
havior has resulted in an approximate 2.5- to 3.0-fold increase
in total revolutions/day (36). Mice bred for high wheel running
[high runners (HR) lines] on days 5 and 6 of a 6-day test
exhibit a number of constitutive traits (expressed in the absence
of wheel access) that clearly or plausibly represent adaptations
with respect to wheel-running ability: reduced body mass, less
body fat, lower leptin levels, increased levels of adiponectin,
resistance to high-fat diet-induced obesity, elevated maximal
oxygen consumption during forced treadmill exercise (V̇O2max),
greater treadmill endurance, mild cardiac hypertrophy, in-
creased insulin-stimulated glucose uptake in the extensor digi-
torum longus muscle, a trend toward higher muscle aerobic
capacities (via mitochondrial and glycolytic enzyme activities),
lower anaerobic capacities, elevated muscle glycogen concen-
trations, greater muscle (plantaris) capillarity, and altered fiber
types in gastrocnemius muscle (see Refs. 3, 16, 18, 37–41 and
references therein; not an exhaustive list). The later three
phenotypes are unique to selectively bred individuals express-
ing the minimuscle phenotype, characterized by an �50%
reduction in mass of the triceps surae muscle complex (gas-
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trocnemius, plantaris, soleus) and in the mass of the entire
hindlimb musculature (see Ref. 28 and references therein).
This phenotype is caused by an autosomal recessive mutation
representing a C-to-T transition located in a 709 bp intron
between exons 11 and 12 of the myosin heavy polypeptide 4
(Myh4) skeletal muscle gene (28). It has been observed in two
(lab designation line 3 and 6) of the four HR lines and one (lab
designation line 5) of the four control lines (28).

In addition to differences observed between HR and control
mice in the absence of wheel access (above), we have also
observed enhanced plasticity (training effects) in some traits,
such as the concentration of the glucose transporter GLUT4 in
gastrocnemius muscle. This enhanced plasticity is not explain-
able by the greater running in HR lines but appears to reflect
inherently greater plasticity in the HR lines (i.e., for a given
amount of stimulus, such as wheel running/day, individuals in
the HR lines show a greater response compared with individ-
uals in the control lines). For complete context and discussion
of these traits see Ref. (14).

Previously, we generated an advanced intercross line (AIL;
G4) of mice through reciprocal crosses between a line selec-
tively bred for high voluntary wheel running (lab designation
line 8) and the inbred strain C57BL/6J (23). The inbred strain
was chosen, rather than one of the control lines, in an attempt
to maximize the number of fully informative genetic markers.
The minimuscle phenotype, discussed above, has never been
observed in the HR line utilized to create the AIL. The G4

population has formerly been utilized for investigation of the
phenotypic relationships between and identification of QTL for
voluntary exercise traits, body composition traits, food con-
sumption, changes in body weight and composition in response
to exercise, and skeletal architecture traits (13, 24, 25). Most
recently, using whole-brain tissue (26), we reported on the
transcriptional landscape relevant to motivational aspects of
voluntary exercise, with the presumption that results would be
more relevant to motivational aspects than to physical abilities
for exercise. We identified genome-wide expression quantita-
tive trait loci (eQTL) and, on the basis of both positional and
functional evidence, discussed plausible candidate genes reg-
ulating voluntary activity, body composition, and their inter-
actions.

Here, we build upon that initial model of underlying func-
tional genomic architecture by use of hindlimb muscle tissue to
capture the transcriptional landscape relevant to certain aspects
of the ability to engage in voluntary exercise. Coupled with
previous investigations (phenotypic, QTL, eQTL), this study
continues to build upon a systems approach toward understand-
ing the predisposition to engage in voluntary exercise. For a
detailed discussion of systems approaches aimed at the dissec-
tion of complex traits see (see Figs. 1, 4 in Refs. 27 and 33,
respectively). Our initial goal in the present paper is to provide
a broad comparison of muscle eQTL results to previous eQTL
data gathered for brain tissue. As detailed above, we view both
motivation and ability as important in the predisposition to
engaged in voluntary exercise. However, the extent to which
these two factors share a common genetic architecture is
unresolved. A long-term goal is to merge all data from this AIL
and begin to identify common biological mechanisms influ-
encing exercise, body weight, adiposity, and their interactions
(e.g., see Ref. 17).

MATERIALS AND METHODS

Population and phenotyping. An AIL (G4, n � 815) was created by
reciprocally crossing mice selectively bred for high voluntary wheel
running (HR line) and the inbred strain C57BL/6J (B6). Complete
methods regarding the creation and phenotyping of the G4 population,
single nucleotide polymorphisms utilized for QTL analyses (n � 530),
and RNA isolation and microarray analysis procedures may be found
elsewhere (23–26). Only a brief methodological description will be
provided here. All procedures were approved by and are in accordance
with guidelines set forth by the Institutional Animal Care and Use
Committee at the University of North Carolina (UNC) at Chapel Hill.

G4 mice (�8 wk of age) were weighed, body composition assessed
(% fat tissue and % lean tissue; EchoMRI-100, Echo Medical Sys-
tems, Houston, TX), and individually housed with access to running
wheels (circumference � 1.1 m, model 80850; Lafayette Instruments,
Lafayette, IN) for 6 days. Distance (total revolutions), time spent
running (cumulative 1 min intervals in which at least one revolution
was recorded), average speed (total revolutions/time spent running),
and maximum speed were calculated daily, as were the mean values
on days 5 and 6 (the criterion for which the HR line was selectively
bred; see Ref. 36). Mice were removed from the wheels following the
completion of the 6th day of wheel access (i.e., the morning of day 7)
and killed the same day in the order in which they were given wheel
access (which was randomly chosen across both sex and parent-of-
origin types). Following postwheel access weight and body compo-
sition measures, mice were decapitated, and hindlimb (triceps surae
complex, including lateral and medial heads of the gastrocnemius,
plantaris, and soleus) muscles were harvested, flash-frozen in liquid
nitrogen, and stored at �80°C.

RNA isolation and microarray analysis. Isolation and purification
of total RNA with TRIzol (Invitrogen, Carlsbad, CA) was performed
from a homogenate of the right triceps surae complex. A subset (n �
243, 4 individuals were removed from the final analyses because of a
lack of genotype information) of the total G4 population (n � 815)
was utilized and represented the population-wide variation in
running distance, each of two parent-of-origin types [whether a G4

individual was descended from a progenitor (F0) cross of HR� �
B6� or B6� � HR�], and both sexes. These 243 individuals
overlapped with those previously used in Ref. 26. We used the
MouseWG-6 v2.0 Beadchip (Illumina, San Diego, CA) to profile
45,281 transcripts and processed them with the Illumina Microarray
Services at Expression Analysis, (Durham, NC). Profiles were nor-
malized by Loess-Quantile normalization methods with R v. 2.8.1
statistical software (R Development Core Team; http://www.r-projec-
t.org, lumi package), and detection scores � 0.95 were utilized for
correlation and eQTL analyses (8, 19, 32).

Correlation analysis. Genes significantly expressed above back-
ground (detection scores � 0.95) were tested for correlation with
exercise (n � 36) and body composition (n � 17) phenotypes
previously measured in the G4 population by the PROC CORR
procedure in SAS (version 9.1, SAS Institute, Cary, NC). Correlations
were adjusted for sex and parent-of-origin type, factors with
known phenotypic effects (23). P values were adjusted for multiple
comparisons in SAS (PROC MULTTEST procedure) by the false
discovery rate (FDR) procedure controlling the overall type I error
rate at 5% (10).

eQTL analysis. We identified eQTL by the multiple imputation
method within R/qtl for the R environment (7, 35). Statistical models
included sex and parent-of-origin type. Following Ref. 26, a signifi-
cance threshold [logarithm of odds (LOD) � 3.8] was calculated via
permutation tests (n � 1,000) of 100 randomly selected transcripts (an
approach also similar to Ref. 43). Cis-acting (or local) eQTL were
defined as being 10 Mb or less away from the midpoint of the physical
location of the gene each represented, while trans-acting eQTL were
�10 Mb away (following Ref. 12).
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RESULTS

Correlation analysis. Transcripts were normalized (Loess-
Quantile normalization), and 12,794 (of 45,281) were identi-
fied with a detection score (calculated across all 243 mice) �
0.95. After adjustment for multiple testing, 4,413 (0.66% of
total possible) partial correlations were found to be statistically
significant (P � 0.05), indicating potential functional relevance
(Fig. 1). Relationships between exercise-related traits and tran-
script levels accounted for the largest proportion (92.9%) of
observed significant correlations (Fig. 1). Among the exercise
traits, maximum running speed represented the largest per-
centage of significant relationships with transcript levels
(39.0%). Collectively, body weight and composition-related
traits accounted for 5.6% of significant correlations (Fig. 1).
Changes in body weight and composition, as a result of 6
days of exercise, represented 0.7% of significant correla-
tions with transcript levels. Correlations with the greatest
magnitude between exercise/body composition traits and
transcript levels are presented in supporting information
(Supplemental Table S1).1

eQTL analysis. In total, 1,186 cis-acting and 1,330 trans-
acting statistically significant eQTL were observed (Fig. 2, A
and B). The average LOD score for cis-acting eQTL was 14.9
(range � 4.3–84.0), while for trans-acting eQTL the mean
LOD score was 5.5 with a range of 4.3–95.9. Among cis-acting
eQTL, the median distance of the mapped location to the

midpoint of the physical location of the gene was 2.00 Mb, and
the distance was generally negatively correlated with the sig-
nificance level (Fig. 2C). For comparison, our prior work using
brain tissue in the same population yielded a median distance
of 1.94 Mb (26). Moreover, in a recombinant inbred mouse
strain panel, the pre-Collaborative Cross, the median liver
eQTL-gene distance was 0.92 Mb (4). Trans-acting eQTL were
identified on all chromosomes, with a potential master regula-
tory region observed on the proximal end Chr. 1 at �16.7–20.1
Mb harboring 126 eQTL (Fig. 2B). An additional potential
master regulatory region was observed on Chr. 18 at �56.7–
59.8 Mb with 106 eQTL (Fig. 2B). A potential master regula-
tory region on Chr. 1 was also previously identified from brain
expression data. However, this region was found distally at
�170–180 Mb and contained 332 trans-acting eQTL.

Using the G4 population we previously identified 39 signif-
icant and 18 suggestive QTL representing various exercise
traits (21). Here, as in Ref. 26 we compared the locations of
cis-acting eQTL within the confidence intervals (CI, defined by
1 LOD drop) of QTL observed for subsets of the mean exercise
traits (distance, duration, average speed, and maximum speed;
Fig. 3).

Cis-acting eQTL localizing with running distance QTL
(mean on days 5 and 6) revealed 19 positional candidate genes
on Chr. 7 (Fig. 3A). Among these 19 candidate eQTL, cyto-
chrome c oxidase assembly factor 4 (Coa4; Chchd8, old name)
was significantly (FDR, P � 0.0248, r � 0.2737) correlated
with running distance. For running distance on days 1 or 2, 18
potential candidate genes were identified under 2 QTL on Chr.1 The online version of this article contains supplemental material.
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Fig. 1. The number of statistically significant (P � 0.05, adjusted for multiple comparisons) partial correlations; adjusted for sex and parent of origin, factors
with known phenotypic effects (see Ref. 23) between 17,571 significantly expressed transcripts, and exercise (n � 36) and body composition-related phenotypes
(n � 17). For comparison, the number of significant partial correlations from expression data in brain tissue is inset (gray bars, Ref. 26).
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1 (Fig. 3B). For mean running duration on days 5 and 6, we
identified 22 candidate genes on Chr. 7 (Fig. 3C). The candi-
date genes unique to running duration resulted from an expan-
sion of the CI for running duration loci (91–129 Mb) compared
with the CI for the running distance QTL (99–124 Mb). A
statistically significant partial correlation (FDR, P � 0.0014,
r � 0.3439) was observed between running duration and HtrA
serine peptidase 1 (Htra1) (Fig. 3C). We observed 28 signifi-
cant cis-acting candidate eQTL that mapped under the previ-
ously identified QTL (Chr. 2) for running speed (average and
maximum) on days 5 and 6 of the 6-day wheel exposure (Fig.
3D). We identified 10 cis-acting candidate eQTL for average
running speed on Chr. 14 (Fig. 3E). Of these, partial correla-
tions indicated that N (alpha)-acetyl transferase 16 (Naa16;

Narg1l, old name) and retinoblastoma 1 (Rb1) were statisti-
cally significantly correlated with average running speed on
days 5 and 6 (FDR, P � 0.0328, r � �0.2652; P � 0.0455,
r � 0.2536, respectively). In addition to those identified on
Chr. 2, 31 cis-acting candidate eQTL were identified on Chr.
11 for maximum running speed (Fig. 3F). Of these correlation
analysis revealed that secreted acidic cysteine rich glycoprotein
(Sparc) was significantly correlated with maximal running
speed (FDR, P � 0.0033, r � �0.3253).

We also examined colocalizing cis-acting candidate eQTL
and loci previously identified for change in body weight and
body composition in response to 6 days of exercise. Compar-
isons between cis-acting eQTL and loci observed for percent-
age change in body mass, as a result of 6 days of exercise,
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revealed only seven candidate genes on Chr. 11 (Fig. 4A). For
percentage change in percentage fat mass we identified 21
candidate genes on Chr. 1 and 17 on Chr. 5 (Fig. 4, B and C).
In addition, we observed 15 candidate genes on Chr. 5 for
percentage change in percentage lean mass (Fig. 4D). No

colocalizing cis-acting candidate eQTL was significantly cor-
related with any change in body weight or body composition
variable in response to 6 days of exercise.

In comparison with previously mapped candidate eQTL in
brain tissue (see Ref. 26), muscle tissue revealed fewer cis-
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acting candidate eQTL colocalizing with QTL for exercise and
body composition phenotypes. Brain and muscle tissue shared
the following number of cis-acting candidate eQTL colocaliz-
ing with exercise and body composition phenotypes: running
distance on days 5 and 6 (Chr. 7), 11 out of a possible 19;
running distance (days 1 or 2, Chr. 1), 11 out of a possible 18;
running duration on days 5 and 6 (Chr. 7), 13 out of a possible
22; running speed (average and maximum) on days 5 and 6
(Chr. 2), 13 out of a possible 28; average running speed on
days 5 and 6 (Chr. 14), 7 out of a possible 10; maximum
running speed on days 5 and 6 (Chr. 11), 18 out of a possible
29; percent change in body mass following exercise (Chr. 11),
4 out of a possible 7; percent change in percent fat mass
following exercise, 10 out of a possible 21 (Chr. 1) and 11 out
of a possible 17 (Chr. 5); and percent change in percent lean
mass following exercise, 6 out of possible 19 (Chr. 5).

DISCUSSION

Motivation vs. ability. We previously utilized brain tissue to
examine the transcriptional landscape relevant to the motiva-
tion to engage in voluntary exercise (26), although we recog-
nize that the brain also plays an obvious role in neuromus-
cular stimulation and control, so could also be involved in

running ability. We revealed hundreds of cis-acting candi-
date genes underlying previously identified genomic regions
(QTL) that account for some of the variation in phenotypes
associated with exercise, body composition, and the change
in body composition in response to 6 days of voluntary
wheel running. In addition to describing the general mode of
gene action and reporting on correlational analyses, we
specifically discussed six plausible candidate genes (Insig2,
Socs2, DBY, Arrdc4, Prcp, IL15) and their potential role in
the regulation of voluntary activity, body composition, and
their interactions in a neurophysiological framework. Here,
we have extended that initial model of underlying functional
genomic architecture using hindlimb muscle tissue to cap-
ture the transcriptional landscape relevant to the ability to
engage in voluntary exercise. The primary purpose of this
article is to compare the current results to those in Ref. 26;
however, we do acknowledge that eQTL that are closely
linked may cluster and yet be different. Therefore, overlap-
ping eQTL may not necessarily encompass the same under-
lying genetic loci that govern both motivation and ability. In
cases of brain and muscle eQTL being closely associated, an
important question for further study would be how such
genetic architecture may have evolved by correlated natural
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Fig. 4. Cis-acting eQTL, colocalizing with QTL underlying changes in body weight and composition in response to 6 days of voluntary wheel running.
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or artificial selection acting on the complex phenotype of
voluntary exercise.

Although we previously observed greater transcript expres-
sion levels and diversity in brain tissue (26), we detected far
fewer significant relationships between gene expression and
phenotypes compared with muscle tissue (Fig. 1). We observed
an increase of �1,168% in statistically significant relationships
between muscle transcript expression levels and the same
exercise and body composition phenotypes examined by Ref.
26. This increase is most notably reflected in the elevated
number of significant partial correlations (controlling for sex
and parent-of-origin type) between muscle transcript expres-
sion and exercise-related traits. Of note, the exercise trait most
often significantly correlated with gene expression in the brain
was running duration, while in the muscle it was maximum
running speed. The differences in the distribution of propor-
tions of correlations potentially indicate that total time spent
engaging in exercise behavior may be more influenced by
central (neurobiological) mechanisms, while intensity of exer-
cise may be largely controlled by peripheral mechanisms (in
the current case muscle morphology or physiology). Lending
support to the above hypothesis, Ref. 31 observed that nonin-
vasive brain stimulation over the temporal cortex in trained
cyclists regulates activity of autonomic nervous system and the
perception of effort during exercise.

We do acknowledge that a limitation to the current approach
is the choice of a nonspecific brain region as our measure of
comparison. This choice may have produced a significant
signal dilution relative to skeletal muscle and may contribute,
or account for, the large differences in the number of statisti-
cally significant relationships between muscle and brain tran-
script levels and relevant phenotypes. As we stated in Ref. 26,
in our opinion, there is no one particular brain (or muscle)
region sufficient to account for the diversity of behavioral and
physiological traits measured in the G4 population (e.g., run-
ning distance, weight regulation, food consumption). Our com-
promise was to bisect the hemispheres, run our initial expres-
sion assays on one hemisphere, and reserve the remaining
hemisphere for potential follow-up studies in a more focused/
targeted fashion.

Identification of potential candidate genes. As was done
previously (see Ref. 26), we will only discuss a fraction of the
potential candidate genes depicted in Figs. 3 and 4. We have
chosen the genes discussed below based on some combination
of their cis-acting nature, colocalization with previously iden-
tified phenotypic QTL, and significant correlation with pheno-
types of interest.

Insulin induced gene 2 (Insig2) was found to be a highly
significant cis-acting eQTL (LOD � 58.6), colocalizing with
loci previously identified for exercise and body composition-
related traits on Chr. 1. Insig2 has been previously associated
with human obesity, total plasma cholesterol levels, cholesterol
biosynthesis, and lipid and cholesterol metabolism (2, 9, 11,
20, 30). Similar findings for Insig2 were previously reported in
brain tissue (LOD � 100.0 in Ref. 26), potentially indicating a
dual role in underlying both motivation and ability for exercise
behavior. Perhaps more importantly, these findings taken to-
gether reinforce the implication of Insig2 in the regulation of
the relationship between exercise and body weight.

Prolyl carboxypeptidase (angiotensinase C) (Prcp;
2510048K03Rik, old name) was found to be a highly signifi-

cant (LOD � 62.9) cis-acting eQTL colocalizing with previ-
ously identified QTL for running distance and duration on Chr.
7. Prcp-null mice showed elevated levels of brain �-MSH and
reduced food intake, were leaner and shorter than wild-type
controls, and were resistant to high-fat diet-induced obesity
(22, 43). Similar phenotypes have been observed in the HR
strain of mice utilized here (37, 41). Prcp was also a focal
candidate gene in brain tissue (LOD � 99.5, in Ref. 26),
colocalizing with the same phenotypes and as described may
play a pivotal nontissue specific role in the regulation of the
relationship between exercise and body weight.

Secreted acidic cysteine rich glycoprotein (Sparc) was found
to be a highly significant (LOD � 37.5) cis-acting eQTL
mapped to Chr. 11, a region contained within the confidence
intervals of previously identified QTL for running maximum
running on days 5 and 6. Sparc muscle secretion has been
previously reported to increase following exercise and has been
shown to inhibit colon tumorigenesis by increasing apoptosis
(1). Partial correlations also revealed that Sparc was signifi-
cantly correlated with maximal running speed, further increas-
ing the likelihood of its functional relevance. Although not
specifically highlighted in our previous work on brain tissue,
Sparc was a significant cis-acting eQTL (LOD � 63.1) colo-
calizing with same phenotypes described above, however, not
significantly correlating with any focal phenotype.

The validation of the results presented above will necessitate
future studies and additional lines of evidence as described
elsewhere (27, 29). A high priority should be to validate the
functional role of these candidate genes, in the context of both
motivation and ability to engage in voluntary exercise behav-
ior. Regardless, these results coupled with those of Ref. 26
further develop an initial model of the underlying functional
genomic architecture of predisposition to engage in voluntary
exercise and its effects on body weight and composition in the
context of a neurobiological and muscular physiological frame-
work.
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