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Abstract.— Most phylogenetically based statistical methods for the analysis of quantitative or continuously varying phe-
notypic traits assume that variation within species is absent or at least negligible, which is unrealistic for many traits.
Within-species variation has several components. Differences among populations of the same species may represent either
phylogenetic divergence or direct effects of environmental factors that differ among populations (phenotypic plasticity).
Within-population variation also contributes to within-species variation and includes sampling variation, instrument-related
error, low repeatability caused by fluctuations in behavioral or physiological state, variation related to age, sex, season, or
time of day, and individual variation within such categories. Here we develop techniques for analyzing phylogenetically
correlated data to include within-species variation, or “measurement error” as it is often termed in the statistical literature.
We derive methods for (i) univariate analyses, including measurement of “phylogenetic signal,” (ii) correlation and prin-
cipal components analysis for multiple traits, (iii) multiple regression, and (iv) inference of “functional relations,” such as
reduced major axis (RMA) regression. The methods are capable of incorporating measurement error that differs for each
data point (mean value for a species or population), but they can be modified for special cases in which less is known about
measurement error (e.g., when one is willing to assume something about the ratio of measurement error in two traits). We
show that failure to incorporate measurement error can lead to both biased and imprecise (unduly uncertain) parameter
estimates. Even previous methods that are thought to account for measurement error, such as conventional RMA regression,
can be improved by explicitly incorporating measurement error and phylogenetic correlation. We illustrate these methods
with examples and simulations and provide Matlab programs. [Ancestor reconstruction; comparative methods; estimated
generalized least-squares; independent contrasts; maximum likelihood; morphometrics; principal components analysis;
reduced major axis; regression; restricted maximum likelihood]

Most existing phylogenetically based statistical meth-
ods, as commonly applied, assume that within-species
variation is absent or negligible (see reviews by Martins
and Hansen, 1996; Rohlf, 2001, 2006; Garland et al., 2005).
There are two practical reasons for this. First, many pub-
lished comparative data sets do not include anything like
estimates of standard errors associated with the mean
values for species (or populations). Second, although
standard statistical methods are available for incorpo-
rating measurement error and other sources of variation
(Judge et al., 1985; Fuller, 1987), they are not commonly
applied (Harmon and Losos, 2005), and they have rarely
been considered in the context of phylogenetic statistics
in which trait values are correlated among related species
(but see, for example, Harvey and Pagel, 1991: chapter
6; Martins and Lamont, 1998; Housworth et al., 2004). A
related issue is how to incorporate estimates of error in
the phylogenetic topology and branch lengths used for
analyses (Purvis and Garland, 1993; Garland and Dı́az-
Uriarte, 1999; Housworth and Martins, 2001; Huelsen-
beck and Rannala, 2003). Here, however, we focus on
variation in trait values rather than uncertainties in phy-
logenies, and throughout we assume the phylogenies are
known without error.

Our goal is to provide methods for incorporating
within-species variation into phylogenetically based sta-
tistical methods for continuous-valued traits. Outside of
biological comparative studies, the statistical literature
typically refers to the problem that we address as one of
“measurement error” (Fuller, 1987). Measurement error
refers to any type of variation between an observed value
and the “true” value of interest, such as the mean value
of a trait for a species or for a given population within a

species. Thus, estimates of means for whole species will
be affected by differences among populations, by how
many populations are sampled to compute a composite
mean, and by how many and what kind of individu-
als are sampled from each of those populations (Pagel
and Harvey, 1988b; Harvey and Pagel, 1991). Measure-
ment error also occurs within populations, with sources
including sampling variation, instrument-related error,
low repeatability caused by fluctuations in behavioral or
physiological state, variation related to age, sex, season,
or time of day, and true individual variation within such
categories.

We argue that estimates of standard errors associated
with mean values for species (or populations for phylo-
genetic comparisons of intraspecific trait variation, e.g.,
Ashton, 2004), as are now commonly reported in the em-
pirical comparative method literature, provide a conve-
nient, useful, and statistically justified way to capture
the numerous sources of measurement error. Further-
more, accounting for measurement error in this way can
improve parameter estimates and tests of statistical sig-
nificance for problems involving phylogenetically corre-
lated data. Historically, many comparative studies relied
largely on previously published sources for their data.
As such, they rarely reported more than a mean value for
each taxon under consideration. More recently, however,
comparative studies are often conducted de novo, such
that new data are reported and standard errors (or stan-
dard deviations and sample sizes) are becoming more
commonly available. These standard errors incorporate
at least part of the total measurement error. Although
estimating the total measurement error (e.g., the varia-
tion among all populations of a species) is unrealistic,
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incorporating the measurement error associated with
the observations that are actually made to determine a
species mean may provide substantial improvement to
statistical methods.

In addition to addressing the case when standard er-
rors are available for each “tip” associated with a phy-
logenetic tree, our techniques can also be used when
less information is available. For example, in allomet-
ric studies that aim to obtain functional relations among
traits, “general structural relation” models are often em-
ployed, with reduced major axis (RMA) regression a
special case that is most frequently used (Rayner, 1985).
General structural relation models use very little infor-
mation about measurement error; for instance, RMA re-
gression assumes simply that the ratio of within-species
variance for traits is equal to the ratio of total variance of
the trait values. We provide statistical models for general
functional relations that incorporate phylogenetic corre-
lation and measurement error in the most general form,
with phylogenetic counterparts to general structural re-
lation models and RMA regression as special cases.

The source of measurement error, as we have broadly
defined it, will affect its statistical properties. For in-
stance, the measurement error for one trait might be un-
correlated to the measurement error for another trait if
measurement error is caused by instrument-related er-
ror and each trait is measured with a different instru-
ment. In contrast, if measurement error is caused by
among-population variation within species, then mea-
surement errors for different traits could be correlated;
for example, a functional relation between body mass
and leg length observed among species might also occur
among populations within each species, causing within-
species variation (measurement error) of the two traits
to be correlated. Although it is rare for researchers to re-
port correlations in measurement errors among traits, we
nonetheless assume that this correlation can be nonzero
so that the techniques we develop can be applied under
the most general circumstances.

In the literature on phylogenetically based statistical
methods (“comparative methods”), several studies have
explicitly considered measurement error. Lynch (1991)
used a mixed models approach to phylogenetic anal-
yses that explicitly separates components of variation
due to heritable and nonheritable sources; nonheritable
sources of variation include measurement error. This ap-
proach forms the basis of our work and also other pre-
vious analyses of measurement error. Christman et al.
(1997), Felsenstein (2004), and Housworth et al. (2004)
incorporated measurement error to estimate correlations
between traits by treating individual organisms as the
units of study, grafting the data from individuals onto
a phylogenetic tree, with each species represented by
a hard polytomy of individuals. The length of the tip
branchlets (i.e., the within-species variance) is estimated
simultaneously with other parameters of the overall sta-
tistical model. Our general approach is closely related,
although we separate the estimation of the measurement
error (i.e., the standard errors of the species values) from
the estimation of parameters in the model. Although our

approach does not account for the uncertainty in the es-
timates of the standard errors of the within-species vari-
ance, the estimates of the standard errors are unbiased,
and the availability of data on species (or population)
means plus standard errors is generally much greater
than the availability of raw data on the measurements
of all individuals (e.g., whenever data come partly from
published sources). Furthermore, our approach is both
easier to apply and more flexible, allowing researchers
to provide known information about measurement er-
ror associated with each tip value. Thus, even if raw
data on the measurement of individuals are available,
it will be easier to summarize this information as stan-
dard errors and use the procedures we derive. Finally,
our methods can be modified for the case when even less
is known about measurement error—for example, when
the standard errors averaged among species are known
even though the species-specific standard errors are not.

We derive a suite of methods incorporating measure-
ment error into frequently used statistical tests. First, we
incorporate measurement error into univariate models
that aim to estimate ancestral traits (e.g., Bonine et al.,
2005) and quantify the magnitude of phylogenetic signal;
that is, the amount of variation among species that can be
attributed to phylogenetic relatedness (Blomberg et al.,
2003). Second, we develop methods for calculating cor-
relation coefficients between traits while accounting for
both phylogenetic relatedness and measurement error.
An extension of the correlation analysis leads to a phylo-
genetic version of principal components analysis (PCA)
that summarizes the correlations among multiple traits.
Third, we incorporate measurement error into phyloge-
netic regression, when there is a single dependent vari-
able and one or more independent variables. Fourth, we
derive measurement error methods for functional rela-
tion models, in which the mathematical relationship be-
tween variables is calculated without assuming that one
(dependent) variable is driven by other variables, as is
the case in regression. Functional relation models pro-
duce as special cases phylogenetic versions of RMA re-
gression and other types of general structural models
that include measurement error.

Each of these four problems can be analyzed using
different statistical estimation approaches. Throughout
this article, we consider three approaches: estimated
generalized least squares (EGLS; Judge et al., 1985),
maximum likelihood (ML), and restricted maximum
likelihood (REML); these are described in more de-
tail in Appendix 1. These three estimation approaches
have different advantages and disadvantages. Rather
than perform exhaustive comparisons among estimation
methods, instead we illustrate the statistical characteris-
tics of each method by applying them to real data and
performing selective simulation studies. Our philosophy
is that, when in doubt, it is best to use multiple estimation
methods, and if they give different results, perform post
hoc diagnostics to select the best (e.g., least biased and
most precise). All data analyses and simulations were
performed using programs written in Matlab that are
available from TG upon request.
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ANALYSES

Univariate Analyses and Phylogenetic Signal

The problem of finding the best estimator of the expec-
tation of a random variable when there is phylogenetic
correlation and measurement error is given by the statis-
tical model

X∗ = a + ε (1)

X = X∗ + η

where X* is a N× 1 dimensional vector containing the
true values of a trait in a sample of N species (tips), a is
a scalar giving the expected value of the trait, ε is a N×
1 vector of zero-mean error terms depicting the evolu-
tionary variance of the trait among species, X is a N× 1
vector containing the observed values of the trait, andη is
the N× 1 vector of errors associated with measurement.
Note that for notational convenience we have written X*
= a+ ε as the sum of a scalar and a vector to represent
X* = a1 + ε where 1 is the N× 1 vector of ones.

Because closely related species will likely have simi-
lar values of trait x, values of ε will be correlated among
species. Thus, we assume the covariance matrix for ε is
given by E{εε’} = σ 2C, where σ 2 scales the overall phy-
logenetically inherited variance (sometimes referred to
as the rate of evolution; Garland et al., 1999; Garland
and Ives, 2000), and C gives the correlation structure
created by phylogenetic relatedness. The most common
assumption in phylogenetic analyses is that evolution
proceeds like a “Brownian motion” process; through
time, the value of a trait changes in small increments
in random directions, like a random walk in continu-
ous time (Felsenstein, 1985). Under this assumption, ε
has a multivariate normal distribution in which the ele-
ment ci j of C is proportional to the length of the shared
branches, from root to the last common ancestor, be-
tween species i and j (Felsenstein, 1985; Hansen and
Martins, 1996; Martins and Hansen, 1997; Garland and
Ives, 2000). Other models of evolutionary change are pos-
sible, such as including a nonphylogenetic component of
evolutionary change (Lynch, 1991; Freckleton et al., 2002;
Housworth et al., 2004) or assuming evolution follows an
Ornstein-Uhlenbeck process (Hansen and Martins, 1996;
Blomberg et al., 2003); each of these will lead to a different
translation of branch lengths into the covariance matrix
C, but the model given by Equation 1 can be applied
regardless of how C is selected.

The measurement error term η similarly has a covari-
ance matrixσ 2

mM. If measurement errors are uncorrelated
among species, M is a diagonal matrix, and the variance
due to measurement error of trait x for species i is σ 2

mmii,
where mii is the ith diagonal element of M. It is possible
that measurement errors are correlated among species,
as might be the case if trait values for a given clade were
all measured by a single researcher using the same tech-
nique that differed from the techniques used for other
clades. In this case, correlation among measurement er-
rors can be incorporated into off-diagonal elements of M.

Although we do not consider correlated measurement
errors in detail, nonzero off-diagonal elements of M can
be used in all of the methods we derive. Finally, although
we will typically assume that ε and η have multivariate
normal distributions, for some of the statistical proce-
dures described below, ε and η need not be restricted to
being normally distributed.

Consider first the case of no measurement error. Equa-
tion 1 can be reformulated as a phylogenetic regression
problem in which the error terms are correlated, and
hence can be analyzed using either independent con-
trasts or, as we will do here, generalized least squares
(Hansen and Martins, 1996; Garland and Ives, 2000;
Rohlf, 2001). Because C is a covariance matrix (and hence
real, symmetric, and nonsingular), there exists another
matrix D such that DCD’ = I, where the apostrophe de-
notes transpose and I is the N × N identity matrix. Matrix
D can be used to transform values of trait x by letting Z
= DX, U = D1 (the N× 1 vector of 1’s), and α = Dε. From
Equation 1 (with η = 0), this gives

Z = Ua + α (2)

The covariance matrix of α is E{αα’} = E{Dε (Dε)’} =
E{Dεε’D’}= DE{εε’}D’ = D(σ 2C) D’ = σ 2I. Thus, no co-
variance terms appear in the covariance matrix of α, so
the error terms αι are uncorrelated. Equation 2 can, there-
fore, be analyzed as a standard least-squares regression
problem with independent errors. Specifically, the gen-
eralized least-squares (GLS) estimator of a is

â = U′Z
U′U

= (D1)′(DX)
(D1)′(D1)

= 1′D′DY
1′D′D1

= 1′C−1X
1′C−11

(3)

The corresponding estimate of σ 2 is the mean squared
error,

σ̂ 2 = 1
N − 1

(X − â )′C−1(X − â ) (4)

What advantages does the phylogenetic mean value of
trait x, â , have over the sample mean, x̄ = 1

N

∑N
i=1 xi ? The

expectations of both â and x̄ are a , so both estimates are
unbiased. Nonetheless, â has lower variance than x̄; in
fact, â is the minimum-variance estimator of a (Judge
et al., 1985).

When there is measurement error, the expression for
the observed trait values x from Equation 1 can be written

X = a + ε + η (5)

where the observed (total) error term, ε + η, has covari-
ance matrix σ 2

ψ� = σ 2C + σ 2
mM. Consider first the case in

which the measurement error is known for each species,
so the covariance matrix σ 2

mM is known. (Conven-
tional notation separates the covariance matrix into two
components, σ 2

m and M, and assuming the measurement
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error is known implies both components are known.)
Because the covariance matrix C is determined by the
phylogeny, the only parameters that must be estimated
are a and σ 2. However, unlike the case without measure-
ment error, a simple expression like Equation 3 cannot be
derived for the estimate of a , because the matrix σ 2

ψ� =
σ 2C + σ 2

mM now contains a parameter, σ 2, that does not
occur as a simple multiplicative term scaling the overall
magnitude of the covariance matrix �.

The estimation problem presented by Equation 5 is re-
ferred to in the statistical literature as a “measurement
error known” problem (Fuller, 1987), because we assume
that σ 2

m has been estimated independently (as reported by
the standard errors of mean values for species). For non-
phylogenetic analyses, corrective steps for known mea-
surement error are fairly straightforward (Fuller, 1987).
Unfortunately, these corrective steps cannot be applied
when there is phylogenetic correlation (as incorrectly
done by Irschick et al., 1996), and the methods we pro-
vide below are needed. However, other measurement
error problems can be solved rather simply when there
is phylogenetic correlation (C �= I). Specifically, if instead
of knowing the measurement error variance σ 2

m we know
the ratio of measurement error variance to true variance
σ 2

m/σ 2, it is possible to calculate the phylogenetic mean
by replacing C in Equation 3 with � = C + (σ 2

m/σ 2)M
and treat the problem in the usual GLS or independent
contrasts fashion. Because this simple case has been ad-
dressed elsewhere (Pagel and Harvey, 1988a, 1988b; Har-
vey and Pagel, 1991), we do not consider it further.

Estimation.—In Equation 5, two parameters are un-
known: the mean value a of trait x for all species (or,
equivalently, the hypothetical ancestral value at base
of tree) and the phylogenetic variance σ 2 (or, equiva-
lently, the rate of evolution). These parameters can be
estimated using an iterated version of estimated gener-
alized least-squares (EGLS), maximum likelihood (ML),
and restricted maximum likelihood (REML). To obtain
ML and REML estimates, it is necessary to specify the
form of the distribution of error terms ε and η; a nat-
ural assumption, and the one we use here, is that ε
and η are normally distributed. Because the covariance
matrix � contains the parameter σ 2 that must be esti-
mated, for all three methods the confidence intervals
calculated for â are approximations. Note that the dif-
ficulties in estimation when there is measurement er-
ror disappear when there is no measurement error, in
which case GLS and ML estimates are the same, and
provided ε is normally distributed, the estimates of â are
t-distributed.

Appendix 1 gives a full account of these methods as ap-
plied in this article. Also, univariate EGLS estimation can
be implemented using independent contrasts, as done
in the MS DOS program PD SE.EXE (available from TG)
and used by Bonine et al. (2005).

Example.—As an example, we analyzed data from
Martins and Lamont (1998) on display duration for nine
species of lizards. We chose this example because it is
a real comparative data set, is small enough to depict
our results graphically, and has large enough standard

errors for some species that the effects of incorporat-
ing measurement error are clearly apparent. For each
species, Martins and Lamont (1998) provide the stan-
dard error of the measure of the trait, which we use
to compute the matrix σ 2

mM under the assumption that
measurements are independent among species. For com-
parison, we computed parameter estimates assuming
(i) no phylogenetic correlation among species (C = I;
equivalent to assuming a “star phylogeny”) and no mea-
surement error (M = 0), for which the estimate of a is
simply the sample mean; (ii) no phylogenetic correla-
tion but measurement error, with the measurement error
variance differing among points (species); (iii) phyloge-
netic correlation (using as the “true” tree, Fig. 1a) and
no measurement error, which gives the standard phylo-
genetic case analyzed by independent contrasts or GLS;
and (iv) phylogenetic correlation and measurement er-
ror. For each set of assumptions, we computed 95% confi-
dence intervals of the estimates using three approaches.
First, for EGLS we used the standard GLS formulae ig-
noring that we estimated a parameter in the covariance
matrix � and the uncertainty associated with this esti-
mate (Neter et al., 1989). Second, for ML we derived ap-
proximate confidence intervals from the log-likelihood
function (Judge et al., 1985); this is a standard procedure
used in ML estimation. Third, for all three estimation
methods we used parametric bootstrapping under the
assumption that both measurement and true errors are
normally distributed. Parametric bootstrapping (Efron
and Tibshirani, 1993) is a simulation procedure in which
parameters are first estimated (by whatever method is
being used), the statistical model with its estimated pa-
rameters is used to simulate data sets, and the parameters
are estimated from the simulated data. After repeating
this many (e.g., 2000) times, the resulting set of estimates
approximates the distribution of the estimator (see Ap-
pendix 1 for details). The term “parametric bootstrap-
ping” is potentially confusing, because unlike standard
(nonparametric) bootstrapping, the residuals obtained
from the true data are not resampled to create new data
sets but are instead simulated. Parametric bootstrapping
is necessary in our case, because we do not know the ac-
tual measurements for each sample used to give species
values; therefore, the measurement error must be sim-
ulated from a random number generator. Although it
might be less confusing to refer to parametric bootstrap-
ping more simply as “simulation” to obtain confidence
intervals, this then introduces confusion when we per-
form simulations to explore the statistical properties of
the estimation methods. A particular advantage of para-
metric bootstrapping is that not only does it give con-
fidence intervals, it also identifies bias; if, for example,
the mean of the bootstrapped estimates is lower than the
true estimate, then this identifies that the estimator is
downward biased.

All three estimation methods incorporating measure-
ment error gave similar estimates of a and σ 2 when phy-
logenetic correlation was not included (i.e., C = I, case
ii). However, when assuming Brownian motion evolu-
tion along the true phylogeny (i.e., C �= I, case iv), the
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FIGURE 1. For the univariate case using data from Martins and Lamont (1998), the effects of measurement error can be visualized by
constructing a tree that corresponds to the covariance structure of the data combining both phylogenetic covariance and measurement error
variance (see text). The measurement error variance lengthens the terminal branch segments of the tree, with the length of the tip extension
giving the measurement error variance relative to the variance of the evolutionary process. (a) The phylogenetic tree from which the covariance
matrix σ 2C is calculated. (b) The phylogenetic tree with the variance associated with measurement error for total display duration graphed
onto the tips of the tree, thereby giving a graphical representation of the covariance matrix σ 2C + σ 2

mM. For comparison, (c) is like (b) but
with measure error for another trait, headbob duration. By increasing the expected within-species variances without changing among-species
covariances, measurement error decreases the among-species correlations in the observed data. The table gives trait values and standard errors
of the measurements for both traits and estimates of the phylogenetic mean a are given for each tree.

ML estimates of both parameters a and σ 2 differed siz-
ably from the estimates obtained from EGLS and REML
(Table 1). The ML estimate of σ 2 appears to be strongly
downward biased; the ML estimate of σ 2 is 0.049 and the
mean of the bootstrapped estimator is 0.032. Bias of ML
estimates of variances is a common observation found
in many types of statistical problems, and the relative
lack of bias of REML estimates is a frequent justification
for preferring REML over ML (Patterson and Thompson,
1971; Cooper and Thompson, 1977; Smyth and Verbyla,
1996). Unfortunately, there is no good way to predict a
priori the magnitude of bias; in this particular example,
strong bias in the ML estimator only occurred for cases
when phylogenetic correlation was incorporated.

Comparing cases ii and iv, accounting for measure-
ment error results in markedly lower estimates of σ 2.
This occurs because part of the variability of the data is at-
tributed to measurement error, leaving less true variabil-
ity among species. The effects of measurement error can
be visualized by constructing a tree that gives the covari-
ance structure of the data combining both phylogenetic

covariance and measurement error variance; this is done
using the EGLS estimates σ 2 in Figure 1 for both total
display duration and, for comparison, headbob duration
(for another example, see Bonine et al., 2005). The effect
of measurement error is to lengthen the terminal branch
segments of the tree beyond the strict phylogenetic tree,
with the length of the tip extension giving the mea-
surement error variance. By increasing within-species
variances without changing among-species covariances,
measurement error decreases the among-species corre-
lations in the observed data.

Accounting for measurement error will increase es-
timates of the strength of phylogenetic signal in data
sets. Blomberg et al. (2003) derived a measure, K ∗, of
the strength of phylogenetic signal. The measure K ∗ de-
pends on the ratio of the rate of evolution (measured by
σ 2) required to explain the variability in a trait among
species under the assumption of no phylogenetic corre-
lation (C = I) to the rate of evolution required under the
assumption that C is given by the working phylogeny.
This ratio computed for the data is then compared to the
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TABLE 1. Parameter estimates of the phylogenetic mean a and variance σ 2 and the measure of phylogenetic signal K ∗ for data on total display
duration of nine species of iguanas (from Martins and Lamont, 1998: fig. 1).

Phylogeny Method Phylogenetic mean a Bootstrap estimate σ 2 Bootstrap estimate K ∗

I (star)a GLSc (no m.e.) 2.821 (2.08, 3.56) 2.83 (2.22, 3.46)4 0.93 (0.22, 1.81) 0.94 (0.25, 2.05)4

EGLSd 2.95 (2.32, 3.57)2 2.95 (2.41, 3.47) 0.29 (0.070, 0.57)2 0.30 (0, 1.12)
MLe 2.95 (2.40, 3.50)3 2.96 (2.48, 3.43) 0.22 (0, 0.75)3 0.19 (0, 0.80)
REML f 2.94 2.95 (2.42, 3.46) 0.28 0.29 (0, 1.04)3

C (true)b GLS (no m.e.) 2.521 (0.10, 4.94) 2.53 (0.49, 4.63) 1.92 (0.46, 3.74) 1.91 (0.52, 4.17) 0.32 (P < 0.05)5

EGLS 2.76 (1.61, 3.91)2 2.77 (1.73, 3.74) 0.35 (0.084, 0.68) 0.40 (0, 1.77) 0.53 (P > 0.4)
ML 2.94 (2.16, 3.72) 2.93 (2.44, 3.41) 0.049 (0, 0.44) 0.032 (0, 0.20) 4.5 (P > 0.5)
REML 2.76 2.75 (1.80, 3.72) 0.32 0.32 (0, 1.10) 0.57 (P > 0.4)

a Star phylogeny assuming no phylogenetic relatedness; covariance matrix is the identity matrix I.
b True phylogeny with covariance matrix C.
c Generalized least squares assuming no measurement error.
d Estimated generalized least squares incorporating measurement error.
e Maximum likelihood incorporating measurement error.
f Restricted maximum likelihood incorporating measurement error.
1Also implemented in the MS DOS program PD SE.EXE, as used in Bonine et al. (2005).
2Approximate 95% confidence interval obtained from GLS.
3Approximate 95% confidence interval obtained from ML.
4Approximate 95% confidence interval obtained from parametric bootstrapping.
5Probability of rejecting the null hypothesis that K ∗ equals 1 (Brownian motion evolution along specified phylogeny).

theoretical expectation of the ratio to give K ∗. A value
of K ∗ = 1 implies that the observed pattern of covari-
ances in the data is consistent with that expected from
the working phylogeny (specified by the covariance ma-
trix C), whereas values of K ∗ less than one imply that
the strength of phylogenetic correlation is lower than
expected from the phylogeny. Thus, values of K ∗ less
than 1 imply weaker phylogenetic signal. When mea-
surement error exists, K ∗ should be calculated after re-
moving the variance caused by measurement error. Thus,
K ∗ depends on the estimated variance σ 2 of the “true”
values X* rather than the variance associated with the
observed values X, which also depends on σ 2

mM. (Note
that Blomberg et al. [2003] also derive a measure K
that is closely correlated to K ∗. For technical reasons
we will not discuss here, in measurement error prob-
lems K ∗ is a more appropriate measure of phylogenetic
signal. See also Rohlf, 2006.)

The estimate of K ∗ for lizard display duration is statis-
tically significantly less than 1 when assuming no mea-
surement error (Table 1). In contrast, the value of K ∗
estimated, while accounting for measurement error is not
statistically different from 1 (Table 1). Thus, accounting
for measurement error reveals the underlying phyloge-
netic signal. Note that the ML estimate of K ∗ is greater
than 1, although this is due to the same bias that pro-
duced the low ML estimate of σ 2.

Simulation.—In the example above, we know neither
the true value of a nor the true phylogenetic correlation,
making it impossible to study the statistical properties of
the parameter estimators. To examine these properties,
we simulated data using the phylogeny from Martins
and Lamont (1998; see Fig. 1). We assumed that the trait
evolves in a Brownian motion fashion with σ 2 = 0.35
(the EGLS estimate from the data for total display dura-
tion). To simulate measurement error, we assumed that
the standard deviation of a measurement on a single ani-

mal is twice the reported standard error of total duration
as reported in Martins and Lamont (1998). This gives
high measurement error and hence a strong test of the
estimation methods incorporating measurement error.
To vary measurement error, we assumed that data from
n = 2k (k = 0, 1, . . . , 6) individuals were obtained for each
species; increasing the sample size n decreases measure-
ment error because the standard error of the measure-
ment error is proportional to 1/

√
n. For each simulated

data set, we calculated the estimates of a , σ 2, and the
measure of phylogenetic signal K ∗. We used only EGLS
estimation; REML estimation gave similar results, and
ML estimation showed considerable bias, particularly in
the estimates of K ∗.

The simulations show that accounting for measure-
ment error has little effect on the estimate of a , although
the confidence intervals decrease (Fig. 2). In contrast, the
estimate ofσ 2 is greatly improved when measurement er-
ror is incorporated into the analysis. Nonetheless, when
measurement error is large, even accounting for mea-
surement error does not overcome an upwards bias in
the estimate of σ 2. Similarly, when measurement error is
accounted for, the estimate of K ∗ is less biased around its
true value of 1 and has confidence intervals that are rela-
tively insensitive to the strength of measurement error. In
contrast, when measurement error is ignored, estimates
of K ∗ are markedly low when there is large measurement
error. We should point out, however, that the measure-
ment error used in the simulations was very high; with
a sample size of one, the average standard error of the
measurement error was 1.4, which is more than twice
the standard deviation of the true among-species error,
0.59. The measurement error reported by Martins and
Lamont (1998) corresponds to our simulated sample size
of 22 = 4, and the bias in both σ 2 and K ∗ above this is
minimal for the estimation methods incorporating mea-
surement error.
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FIGURE 2. Simulation of the univariate case to provide estimates
of (a) a , (b) σ , and (c) the measure of phylogenetic signal K ∗. Solid
lines give the EGLS estimates accounting for measurement error, and
the corresponding 95% bounds of the estimate are given by the shaded
region. Dashed lines give the estimate and 95% bounds of the estimate
obtained without accounting for measurement error (GLS). We assume
the 9-tip phylogeny presented by Martins and Lamont (1998). Trait x
evolves according to Brownian motion evolution, with a = 0 and σ 2 =
0.35. Measurement error for measurements on single individuals is
assumed to have standard error equal to 2 times the standard error
provided by Martins and Lamont (1998) for total display duration. For
each simulated sample size n = 2k (k = 0, 1, . . . , 6), 2000 data sets were
simulated, and estimates for each parameter were computed.

Correlation between Traits

When measurement error exists, the correlation coef-
ficient between two traits x and y can be calculated from
the statistical model

X∗ = ax + εx; Y∗ = ay + εy; X = X∗ + ηx; Y = Y∗ + ηy (6)

where as before X∗ and Y∗ represent the true values of
traits x and y among species with the true variation given
by εx and εy, and X and Y are the values observed with
measurement error ηx and ηy.

The joint covariance matrix for εx and εy is

E{εε′} =
(

σ 2
x Cx rσxσyCxy

rσxσyCxy, σ 2
y Cy

)
(7)

where ε is the 2N × 1 vector of error terms created by
stacking εx on top of εy, and Cxy = D−1

x (D′
y)−1 where D−1

x
and D−1

y are the Cholesky decompositions of Cx and Cy

such that DxCxDx’ = DyCyDy’ = I. In this formulation
(and in our Matlab code), the matrices Cx and Cy can
differ, and therefore trees with different branch lengths
(or even different trees) can be used for different traits.
For measurement errors

E{ηη′} =
(

σ 2
mxMx rmσmxσmyMxy

rmσmxσmyM′
xy σ 2

myMy

)
(8)

where η is the 2N × 1 vector created by stacking ηx on
top of ηy, σ 2

mxMx and σ 2
myMy are matrices containing the

measurement error variances, and rmσmxσmyMxy is the
matrix containing covariances in measurement errors be-
tween traits for each species. If measurement errors for
each trait are independent among species, then Mx, My,
and Mxy will be diagonal matrices (i.e., all off-diagonal
elements will be zero). If measurement errors for the two
traits within species are correlated (e.g., the measure-
ments of traits x and y for a given species tend to err ei-
ther high or low in unison), then this correlation is given
by rmMxy.

As in the univariate case, the observed values of traits
x and y can be expressed in terms of both ε and η as

W = A + ε + η (9)

where W is the 2N × 1 vector created by stacking X and Y,
and A is the 2N × 1 vector whose first N elements are ax
and second N elements are ay. The resulting covariance
matrix E{(W–A)(W–A)’} = σ 2� is

σ 2� =
(

σ 2
x Cx + σ 2

mxMx rσxσyCxy + rmσmxσmyMxy

rσxσyC′
xy + rmσmxσmyM′

xy σ 2
y Cy + σ 2

myMy

)
.

(10)

The case for more than two variables is similar: W is
created by stacking vectors of trait values, and σ 2� is
constructed with diagonal blocks σ 2

x Cx + σ 2
mxMx and off-

diagonal blocks rσxσyCxy + rmσmxσmyMxy for any pair of
traits x and y.

Estimation.—When estimates are available for the stan-
dard errors of the trait values for each species, these
give the values of σ 2

mxMx, σ 2
myMy, and rmσmxσmyMxy.
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TABLE 2. GLS, EGLS, and REML estimates of the correlation coefficient (r ) between log body size and log sprint speed from Bauwens et al.
(1995).

Phylogeny GLS GLS bootstrap EGLS EGLS bootstrap REML REML bootstrap

I (star) 0.466 0.4541 (−0.11, 0.81)2 0.478 0.4651 (−0.15, 0.85)2 0.497 0.4861 (−0.098, 0.85)2

C (true) 0.022 0.0171 (−0.57, 0.56)2 0.025 0.0331 (−0.60, 0.65)2 0.341 0.3311 (−0.28, 0.81)2

1Mean of the parametric bootstrap distribution of r .
295% parametric bootstrap confidence intervals from 2000 replication data sets.

Furthermore, the phylogeny and associated assumption
about evolutionary change give Cx and Cy. Therefore, the
only parameters that must be estimated are ax, ay, σ 2

x , σ 2
y ,

and r for the case of bivariate correlation. As with the uni-
variate case, multiple methods can be used to estimate
the parameters for the model given by Equations 9 and
10. Here, we illustrate EGLS and REML (Appendix 1), al-
though we also provide Matlab programs for ML. EGLS
has the advantage that it can be formally applied when
the true variation and/or measurement error variation
are not normally distributed. As we show below, REML
has the advantage of having almost no bias, compared
to a slight bias shown by EGLS. Furthermore, when cal-
culating the correlation between multiple pairs of traits,
REML (and ML) uses data from all of the traits in esti-
mating each pairwise correlation; this leads to the best es-
timates when performing multivariate analyses such as
PCA. Although there are multiple methods for obtaining
confidence intervals for the estimates (see “Univariate
Analyses” above), we restricted attention to parametric
bootstrapping; for small sample sizes typical of many
phylogenetic studies, estimators of the correlation coef-
ficients are often biased, and therefore parametric boot-
strapping is often the most robust approach for obtaining
confidence intervals.

Example.—We analyzed data from Bauwens et al.
(1995) on the body mass, hind-limb length, and sprint
speed of 13 species of lizards using phylogeny A from
their figure 2. Their table 1 provides means and stan-
dard errors for these traits on the arithmetic scale. We
chose this example because it includes traits that might
be subjected to a number of different statistical analy-
ses (correlation, regression, and functional relation mod-
els) and because it is of a size (13 species, n = 4 to 20
individuals measured per species), which is not atyp-
ical of “small” comparative studies (e.g., see compila-
tions in Ricklefs and Starck, 1996; Freckleton et al., 2002;
Blomberg et al., 2003). We log-transformed all traits,
which reduced skew in the distribution of trait values
(analyses not presented). When log-transforming values
that are measured with variation, both the mean and
variance of the log-transformed data depend on the vari-
ance of the measurement error; thus, we assumed that a
given trait value for a given species was log-normally
distributed and performed the log-transformation ac-
cordingly (Appendix 2). Finally, we assumed that mea-
surement errors are not correlated among traits, so rm =
0 in Equation 10.

In this example, as is likely to be common (e.g., Martins
and Lamont, 1998; Bonine et al., 2005), the sample sizes

for some species values were small (n = 4). When sample
sizes are small, the standard errors themselves are impre-
cise estimates of the measurement error. In practice, this
issue is often inconsequential, because the estimates of
measurement error, while imprecise, are nonetheless un-
biased. A possible approach when there are small sample
sizes, or if some species are represented by a single in-
dividual (e.g., Langerhans et al., 2006), is to compute the
average per sample measurement error and from this
calculate the measurement error for each species based
on its corresponding sample size (Appendix 3). For the
analyses below, we used both the standard errors pro-
vided in Bauwens et al. (1995) and the measurement
error obtained by averaging across species; both proce-
dures gave quantitatively very close results and so we
present only the results using the standard errors for each
species.

For a bivariate example, we computed estimates of r
between body mass and sprint speed using GLS (i.e.,
with no measurement error), EGLS, and REML assum-
ing either no phylogenetic relatedness among species (a
star phylogeny, Cx = Cy = I) or phylogenetic related-
ness given by the true phylogeny under Brownian mo-
tion evolution (Table 2). For the star phylogeny, EGLS
and REML estimates of r were similar and did not dif-
fer greatly from the GLS estimate. However, for the true
phylogeny, the EGLS estimate (0.025) was similar to the
GLS estimate (0.022), and both were much lower than
the REML estimate (0.341). The mean of the REML boot-
strapped estimates of r (0.327) was lower than the REML
estimate, suggesting that if anything, the REML estimate
is biased downwards. This suggests that the EGLS esti-
mate (0.025) is even more severely biased than the REML
estimate. Despite the large difference between the EGLS
and REML estimates, the confidence intervals for both
are large, and in neither case is the estimate of r statisti-
cally different from zero.

To investigate correlations between multiple pairs of
traits, we estimated r for the three pairs of traits: body
mass, sprint speed, and hind-limb length using GLS,
EGLS, and REML. To implement REML, we estimated
correlations in both a pairwise fashion (pairwise REML)
and simultaneously for all three traits (joint REML). Joint
REML is the correct REML procedure, because REML es-
timation is based on the likelihood of the entire data set.
(Our Matlab program automatically implements joint
REML.) Thus, information about the correlation between
traits x and y, and between traits y and z, is used in the es-
timation of the correlation between traits x and z. Stated
another way, the estimates of the pairwise correlations
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TABLE 3. Estimates of correlation coefficients and loadings on the
first principal component (PC 1) for traits log body mass (x), log sprint
speed (y), and log hind-limb length (z) provided by Bauwens et al.
(1995) for 13 lizard species.

Loading
% Variance

Method rxy rxz ryz PC 1 x y z

GLS (no m.e.) 0.022 0.845 0.491 0.66 0.36 0.22 0.42
EGLS 0.025 0.867 0.550 —1

Pairwise REML 0.341 0.899 0.799 —1

Joint REML 0.257 0.887 0.635 0.74 0.34 0.27 0.39

1The covariance matrix obtained from pairwise analyses was not positive
definite.

among traits are not independent. This differs from the
case without measurement error, where estimates of pair-
wise correlations are independent. Researchers might be
tempted to calculate correlation coefficients separately
in a pairwise fashion, particularly when large numbers
of pairwise correlations are desired. We calculated pair-
wise REML estimates, even though this is not a cor-
rect procedure, to illustrate the problems that this can
cause.

The estimated correlations for all three pairs of traits
(body mass, sprint speed, hind-limb length) using pair-
wise REML tended to be larger than the GLS and EGLS
estimates (Table 3). The joint REML estimates are slightly
less high. The three-species correlation matrices obtained
from both EGLS and pairwise REML are not valid, be-
cause they are not positive definite. The requirement that
correlation matrices be positive definite is equivalent to
the requirement that correlation coefficients be between
−1 and +1; just as it makes no sense for correlation co-
efficients to be greater than +1, it makes no sense for a
correlation matrix not to be positive definite. The fail-
ure of the correlation matrices obtained from EGLS and
pairwise REML to be positive definite is caused by the
low estimated correlation between body size and sprint
speed, rxy. Because traits x (log body size) and z (log hind-
limb length) are highly correlated, and traits y (log sprint
speed) and z are highly correlated, traits x and y must
also be highly correlated for the correlation matrix to be
positive definite, but this condition is not met for EGLS
and pairwise REML. In contrast, the correlation matrices
obtained from GLS (for which pairwise estimates of cor-
relation coefficients are independent) and joint REML
(which estimates all correlation coefficients simultane-
ously) are positive definite. This particular data set is
prone to the problem of estimated correlation matri-
ces not being positive definite, because the sample size
is small and the correlations between traits are high.
Nonetheless, this problem is likely to arise frequently
in similar data sets.

Using the estimated correlation matrices, we per-
formed a PCA (Sokal and Rohlf, 1981), calculating the
first PC axis and corresponding loadings (Table 3). The
high correlations obtained from the joint REML caused
74% of the correlation to be captured by the first prin-

cipal components axis (PC1). In contrast, the PC1 using
the GLS estimates was 66%. Thus, incorporating mea-
surement error reveals a stronger correlation structure
in the data. Because the correlation matrices obtained
from EGLS and pairwise REML are not positive definite,
the resulting PCAs are invalid.

Simulation.—To investigate the properties of the es-
timators of r , we performed a simulation study based
on the example. Specifically, we simulated data for 13
species having the phylogeny of the 13 species studied
by Bauwens et al. (1995). We assumed that two traits x
and y followed Brownian motion evolution up the phy-
logenetic tree with rates σx = 0.86, σy = 0.28, and r = 0.83.
We assumed that the standard deviation of the measure-
ment on a single animal is 4 times the standard error
reported by Bauwens et al. (1995) for body mass and
sprint speed, and that data from n = 2k (k = 0, 1, . . . , 6)
individuals were obtained for each species. Thus, when
k = 4 (n = 16), the measurement error variance is equal to
that reported in Bauwens et al. (1995), and higher vari-
ance occurs for smaller sample sizes. For each of 2000
simulated data sets at each sample size n, we estimated
parameters using both EGLS and REML.

After accounting for measurement error, REML esti-
mates of r had only slight downward bias, with the ap-
proximate expectation ranging between 0.813 and 0.821
for a true value of r = 0.83 (Fig. 3). The EGLS estimates
had greater downward bias for small sample sizes. In
contrast, the GLS estimates that ignore measurement er-
ror had much greater downward bias. In addition to
having less bias than the EGLS estimates, the REML esti-
mates were also consistently more precise, with narrower
95% inclusion bounds. Note also that the distribution of
the REML estimates is highly skewed; the upper 95%
inclusion bound never exceeds 0.88, while the lower in-
clusion bound drops to almost zero. This is expected, as
r is constrained to be less than or equal to one (see also
Martins and Garland, 1991).

Regression

A statistical model for regression with phylogenetic
relatedness and measurement error is given by

X∗ = ax + εx; Y∗ = b0 + b1

X∗ + εy; X = X∗ + ηx; Y = Y∗ + ηy (11)

where, as before, X∗ and Y∗ represent the true values of
traits x and y among species, and X and Y are the val-
ues observed with measurement error ηx and ηy. Because
values of the independent trait x will likely be phyloge-
netically correlated, we assume εx has covariance matrix
Cx, and because residual variance in Y∗ given by εy is
also likely to be phylogenetically correlated, we assume
εy has covariance matrix Cy. Following standard regres-
sion, we assume that variations in X∗ and εy are indepen-
dent. As before, we assume that measurement error may
be correlated for traits x and y within species, leading to
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FIGURE 3. (a) EGLS and (b) REML estimates of the correlation co-
efficient r from simulated data sets based on Bauwens et al. (1995).
Solid lines give estimates accounting for measurement error, and the
corresponding 95% bounds of the estimate are given by the shaded
region. Dashed lines give the estimate and 95% bounds of the estimate
obtained without accounting for measurement error (GLS). We assume
there are 13 species with phylogeny given by the phylogeny for the 13
lizards analyzed by Bauwens et al. (1995). Both traits evolve according
to Brownian motion evolution, with σ x = 0.86, σ y = 0.28, and r = 0.83.
Measurement error for measurements on single individuals is assumed
to have standard error equal to 4 times the species standard errors pro-
vided by Bauwens et al. (1995). For each simulated sample size n = 2k

(k = 0, 1, . . . , 6), 2000 data sets were simulated, and estimates for each
parameter were computed.

the measurement error covariance matrix given in Equa-
tion 8. If there is no measurement error (Mx = My = 0),
then this problem reduces to phylogenetic regression that
can be solved with GLS (e.g., as implemented in the Mat-
lab REGRESSION.M program of Blomberg et al., 2003)
or independent contrasts (Garland and Ives, 2000).

Just like the correlation model, the regression model
can be written in terms of W given by Equation 9, leading

to the covariance matrix

σ 2� =(
σ 2

x Cx + σ 2
mxMx b1σ

2
x Cx + rmσmxσmyMxy

b1σ
2
x Cx + rmσmxσmyM′

xy b2
1σ

2
x Cx + σ 2

y Cy + σ 2
myMy

)
.

(12)

Thus, the regression model can be analyzed like the cor-
relation model, with the covariance matrix for σ 2� given
in Equation 12 replacing that in Equation 10. More than
one independent variable (multiple regression) can be
incorporated in a similar manner and different branch
lengths for different traits can be used, as done in our
Matlab programs.

Estimation.—Like univariate analyses and correlation,
EGLS, ML, and REML can be used for estimation (Ap-
pendix 1). Here we consider all three in analyzing an ex-
ample, and study REML in more detail with a simulation.

Example.—As in the example of correlation, we ana-
lyzed the data from Bauwens et al. (1995). Table 4 gives
GLS, EGLS, ML, and REML estimates of the slope b1 for
the regression of log hind-limb length on log body size.
The estimates under the assumption of no phylogeny
relatedness (Cx = Cy = I) are similar for all three meth-
ods incorporating measurement error. Furthermore, the
parametric bootstrap confidence intervals are similar to
the approximate confidence intervals obtained for EGLS
and ML. The only differences among the statistical anal-
yses is the relatively low estimate of b1 obtained for EGLS
when the true phylogeny of the species is used.

In this example incorporating phylogenetic related-
ness caused a large decrease in the estimates of b1,
whereas measurement error had relatively little effect.
Interestingly, the 95% confidence intervals obtained with
phylogenetic information excluded the slope of 1/3 that
would be expected for geometric similarity when EGLS
was used, but not with ML and REML. In this case, se-
lecting an estimation approach does make a difference
in interpreting the results, at least if a confidence level
of 95% is strictly adhered to. Unfortunately, in this case
there is no ground to statistically prefer one estimation
method over another, because all methods showed little
bias. In rare situations like this, all we can recommend is
to report the results cautiously.

Simulation.—We designed simulations similar to pre-
vious simulations (Figs. 2 and 3) to investigate the ef-
fect of measurement error by varying the sample sizes
of individuals measured per species. We also wanted
to compare data sets with different numbers of species;
increasing the number of species will not decrease the
measurement error, but it should decrease the variance
of the parameter estimates by providing more informa-
tion about the relationship between the two traits. Thus,
we wanted to compare the variance in the estimate of b1
when the number of individuals sampled from the same
species is increased versus when the number of species
sampled is increased. We only consider REML estima-
tion, because EGLS and ML give similar results.
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TABLE 4. Estimates of regression slope b1 for log hind-limb length regressed on log body mass for 13 species of lizards from Bauwens et al.
(1995).

Phylogeny GLS (no m.e.) EGLS EGLS bootstrap ML ML bootstrap REML REML bootstrap

I (star) 0.305 (0.19, 0.42)1 0.307 (0.20, 0.41)2 0.307 (0.21, 0.41)3 0.310 (0.21, 0.41)4 0.312 (0.21, 0.42)3 0.309 0.310 (0.21, 0.41)3

C (true) 0.224 (0.13, 0.32)1 0.232 (0.14, 0.33)2 0.231 (0.14, 0.32)3 0.263 (0.17, 0.36)4 0.265 (0.19, 0.35)3 0.260 0.261 (0.18, 0.35)3

195% confidence interval from GLS.
295% confidence interval using the approximate standard error obtained from the GLS formulae.
395% confidence interval from parametric bootstrapping.
495% confidence interval from a t-distribution ML.

For the simulation, we assumed that there were either
13 or 49 species. For the 13-species case, we used the
phylogeny for 13 lizards given by Bauwens et al. (1995).
For the 49-species case, we used the phylogeny for 49
Carnivora and ungulates from Garland et al. (1993). We
set the true value of b1 = 1/3 as would be expected if the
dependent variable was the log of a linear dimension
(e.g., leg length), the independent variable was the log
of body mass, and species of different body size were
geometrically similar. We set the other parameters equal
to the REML estimates from the Bauwens et al. (1995)
data using the full measurement error model with the
true phylogeny (Table 4). For the 13-species phylogeny,
we assumed that the standard deviation of measurement
error for a single individual was 9 times greater than
the standard error reported by Bauwens et al. (1995); we
used such a large measurement error because the true
measurement error did not have a strong effect on the
analyses of the true data. For the 49-species phylogeny,
we assigned standard errors to the species by randomly
selecting from the 13 standard error values used in the
13-species simulation. We assumed that measurement
errors between traits were independent.

In both 13- and 49-species cases, the REML estimate of
b1 incorporating measurement error was at most slightly
biased, whereas the GLS estimate of b1 without measure-
ment error was badly biased when the number of indi-
viduals sampled per species was small (Fig. 4). The bias
of the GLS estimates was nearly the same for both the 13-
and 49-species data sets, illustrating that bias due to mea-
surement error does not depend on the number of species
sampled, only on the precision of the measurements for
each species (and hence the number of individuals sam-
pled per species). Nonetheless, the confidence intervals
of the estimates of b1 become narrower with increasing
numbers of species. This accentuates the statistical prob-
lems that can arise from bias. In the 49-species case, the
true value of b1, 1/3, is excluded from the 95% inclu-
sion interval of the estimates when sample sizes n are
small, so the hypothesis that b1 = 1/3 would be rejected
even though we know that the true value of b1 is 1/3!
Harmon and Losos (2005) discuss more generally the ef-
fect of measurement error on type I and type II errors in
phylogenetic analyses.

Although increasing sample sizes n per species will
reduce measurement error and therefore give more pre-
cise estimates of b1, precision of the estimates of b1 is
also limited by the number of species in the data set.
For these examples, increasing sample sizes per species

FIGURE 4. REML estimates of the slope of a regression of simulated
data sets. In (a) simulated data consisted of 13 species having phy-
logeny given by Bauwens et al. (1995), and in (b) there are 49 species
with the phylogeny given by Garland et al. (1993). Solid lines give esti-
mates accounting for measurement error, and the corresponding 95%
bounds of the estimate are given by the shaded region. Dashed lines
give the estimate and 95% bounds of the estimate obtained without
accounting for measurement error (GLS). Both traits evolve according
to Brownian motion evolution, with b1 = 1/3, σ x = 0.8, and σ y = 0.1.
In (a) the measurement error for measurements on a single individual
is assumed to have standard error equal to 9 times the species standard
errors provided by Bauwens et al. (1995), whereas in (b) measurement
errors are selected at random from these 13 values. For each sample
size n = 2k (k = 0, 1, . . . , 6), 2000 data sets were simulated. Comparable
figures using EGLS and ML estimation were not qualitatively different.
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provides only moderate improvement in the precision
in the estimates of b1 once the sample size exceeds 4.
However, the standard deviation of the estimates of b1 is
decreased by roughly 50% when there are 49 species rela-
tive to 13 species. This is because increasing the number
of species increases information about the relationship
between traits x and y; this information is contained in
the variance among species.

Functional Relation Models

Regression is the appropriate statistical model to apply
when one variable is causally determined by another, or
if one variable is to be predicted by the value of another
variable. However, in many biological questions the goal
is to understand how two traits are functionally related
without assigning a direction of causality. For example,
one might be interested in the relationship between tail
length and leg length among a group of species. The
problem of functional relations has been addressed with
“general structured relations” models (Rayner, 1985), of
which reduced major axis (RMA) regression is the most
frequently used special case. Here we develop functional
relation models that incorporate phylogenetic correla-
tion and measurement error in a flexible way. We then
present some of the special cases that are derived for the
non-phylogenetic case by Rayner (1985). Our goal in pre-
senting these cases is to show that the models derived by
Rayner (1985) can be easily expanded to include phylo-
genies and measurement error.

Our functional relation model is

X∗ = ax + γx; Y∗ = b0 + b1X∗

X = X∗ + εx + ηx; Y = Y∗ + εy + ηy. (13)

Variation in the true value of x among species, X∗, is given
by γ x having covariance matrix σ 2

γ xCγ x. Variation in the
observed values X and Y is divided into two components.
The measurement errors are given by ηx and ηx with
covariance matrices σ 2

mxMx, σ 2
myMy, and rmσ mxσ myMxy,

which we assume are known (see Equation 8). The ob-
served values of X and Y also depend on unknown
sources of variation given by εx and εy with covariance
matrices σ 2

x Cx, and σ 2
y Cy, and cross-covariance matrix r

σxσyCxy. The errors εx and εy represent biological varia-
tion in X and Y that may have a phylogenetic component,
and may additionally contain unknown measurement
error not captured by ηx and ηy.

The model given by Equation 13 contains seven pa-
rameters: ax, b0, b1, σ 2

γ x, σ 2
x , σ 2

y , and r . However, the
information available from a data set allows only five pa-
rameters to be estimated. This can be explained heuris-
tically by noting that a data set provides five pieces of
information about the distribution of x and y: the means
of x and y, their variances, and the covariance between
them. This presents the problem of statistical identifiabil-
ity, which appears frequently in measurement error mod-
els (Fuller, 1987). If no additional information is available,

then the only solution to the identifiability problem is to
make assumptions about the values of parameters or the
mathematical relationships among them. For example,
if it is assumed that there is no unknown variation in
x (σ 2

x = r = 0), then Equation 13 reduces to the regres-
sion model of y on x given by Equation 11. Conversely,
if there is no unknown variation in y (σ 2

y = r = 0), then
Equation 13 reduces to a regression of x on y. Finally, if it
is assumed that there is no variation in X∗ (σ 2

γ x = 0, and
hence b1 = 0), then the model reduces to the correlation
model given by Equation 6.

Additional special cases can be derived by recogniz-
ing that Equation 13 is a generalization of the general
structural relation model of Rayner (1985); specifically,
the general structural equation model is obtained when
there is no phylogenetic correlation, Cγ x = Cx = Cy = I,
and the measurement error is zero, Mx = My = Mxy =
0; a proof is given in Appendix 4. RMA regression is
then derived as a special case assuming that there is
no correlation between εx and εy (r = 0), and the ratio
of standard deviations of εx and εy satisfies σy/σx = b1
(Rayner, 1985). A specific property of RMA regression is
that there is no causal directionality between traits x and
y, because the RMA regression of trait y on x is equiva-
lent to the RMA regression of x on y. Specifically, the first
two lines of Equation 13 could be written equivalently as
Y∗ = ay+ γ y and X∗ = β0+ β1Y∗, where ay = b0 +
b1ax, β0 = −b0/b1, and β1 = 1/b1. Furthermore, be-
cause σy/σx = b1 for RMA regression, σx/σy = 1/b1 =
β1. Therefore, in RMA regression either x or y can be
treated as the “dependent variable.”

Phylogenetic relatedness can be incorporated into
RMA regression by removing the assumption that Cγ x =
Cx = Cy = I. In this case, the estimate of b1 (i.e., the RMA
slope) in the absence of measurement error is

[ (Y − ây)′C−1
y (Y − ây)

(X − âx)′C−1
x (X − âx)

]1/2

(14)

where âx and ây are the phylogenetically correct means
of x and y given by Equation 3. In the phylogenetic ver-
sion of the general structural relation model, all statistical
tests and confidence intervals can be calculated by modi-
fying standard formulae (Rayner, 1985). In particular, the
(1 −α) % confidence intervals of the estimate of b1 are

b̂1sign(ρ)
(

1 ± q
1 ∓ q

)1/2

, (15)

where

ρ = (X − âx)′C−1
xy (Y − ây)[

(X − âx)′C−1
x (X − âx) ∗ (Y − ây)′C−1

y (Y − ây)
]1/2

q = tα,n−2

[
1 − ρ2

(n − 2)ρ2

]1/2
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Another special case can be derived by assuming that
the relative magnitudes of variances in εx and εy are
known to be a constant k (k = σy/σx), and εx and εy are
uncorrelated (r = 0). This might be a reasonable model
when a researcher has limited information about varia-
tion in εx and εy—enough to assign relative but not ab-
solute magnitudes of variance between traits, as was the
case for Pagel and Harvey (1989). We refer to this case as
VRF (variance ratio fixed) regression. With the assump-
tions that k = σy/σx and r = 0, parameters ax, b0, b1, σ 2

γ x,
and σ 2

x can be estimated from Equation 13.
Measurement error can be incorporated into special

cases of the general structural relation model (in partic-
ular RMA and VRF regression) by explicitly considering
the covariance matrix for the observed values of traits
x and y. Specifically, for the bivariate case parameters
can be estimated from the covariance matrix σ 2� for the
vector W constructed by placing X on top of Y:

σ 2� =




σ 2
γ xCγ x + σ 2

x Cx + σ 2
mxMx

b1σ
2
x Cγ x + rσxσyCxy + rmσmxσmyMxy

b1σ
2
x Cγ x + rσxσyC′

xy + rmσmxσmyM′
xy

b2
1σ

2
γ xCx + σ 2

y Cy + σ 2
myMy


 .(16)

Different special cases are given by imposing different
restrictions on the parameters; for example, for RMA re-
gression, r = 0 and σy/σx = b1.

From a statistical perspective, the numerous different
general structural relation models that can be derived
as special cases from Equation 13 might all be consid-
ered equally valid. Thus, correlation, regression, and
RMA regression are all similarly well defined statisti-
cally. Nonetheless, different statistical models are prone
to different mistakes in interpretation. For example, if
RMA regression is applied to two traits that are inde-
pendent, the expectation for the estimated slope will be
1, even though there is no relationship between traits.
In this case, the way to guard against misinterpreting
the RMA slope is to pay attention to confidence inter-
vals; if the traits are independent, the confidence inter-
vals will be wide. Also, a correlation analysis will reveal
lack of correlation between the traits. Here, we do not
want to condone or condemn the use of RMA regression
and other structural relation models, but we do believe
in caution when interpreting their results.

Estimation.—For the general case with measurement
error (Equation 16), EGLS, ML, and REML estimation
can be used. Here we restrict attention to ML estimation.
An advantage of ML over EGLS estimation is that likeli-
hoods can be used to compare different formulations of
the model. Mixing and matching different assumptions,
for example whether or not the error terms εx and εy con-
tain phylogenetic correlations, lead to multiple possible
models, and ML can be used to sort models and find the
best. It is also possible to use REML estimation, although
interpreting likelihoods computed from REML is not as
straightforward as ML, so we prefer ML estimation. For

structural relation models, we found little bias in ML es-
timates, so this major limitation of ML estimation found
for other problems (especially those involving estimates
of variances and correlations) did not occur.

We provide Matlab programs for RMA and VRF
regression.

Example.—For the example, we analyzed the same log
body mass and log hind-limb length data from the 13
lizard species in Bauwens et al. (1995) used in the regres-
sion example. We consider three pairs of models. First,
we use RMA regression and its phylogenetic counter-
part in which estimates of b1 and confidence intervals
are given by Equations 14 and 15 when there is no mea-
surement error (Mx = My = Mxy = 0). We refer to these
models as rma(I) and rma(C), respectively. Second, we
consider the nonphylogenetic and phylogenetic pair of
VRF regressions in which k = σy/σx and r = 0, and there
is no measurement error. For the value of k, we use the
simple average standard errors of log-transformed traits
x (0.0495) and y (0.0177) reported by Bauwens et al.
(1995). This mimics the case in which a researcher has
only rough information about the variation in traits and
assumes that the total unexplained variation in traits x
and y is proportional to their within-species variation es-
timated from the standard error. We refer to these mod-
els as vrf(I) and vrf(C) models, respectively. Third, we
consider the pair of nonphylogenetic and phylogenetic
models that make the assumptions b1 = σy/σx and r = 0
as in RMA regression, but Mx and My are derived from
the standard errors reported by Bauwens et al. (1995). We
refer to these as rmaM(I) and rmaM(C), respectively. We
do not consider measurement error in the VRF regres-
sion model, because we have already used information
about the measurement error to select a value of k.

The nonphylogenetic versions of all three models give
very similar estimates of the functional relation slope
b1 (Table 5). The similarity between the RMA and VRF
models is due to the fact that for the standard errors re-
ported in Bauwens et al. (1995), k = 0.36 which, by coin-
cidence, is very close to the value of b1 = 0.347, which is
assumed to equal k = σy/σx in RMA regression. The es-
timates of b1 for all phylogenetic versions of the models
are lower than the nonphylogenetic versions. However,
the lower log-likelihoods for the phylogenetic versions
indicate that they fit the data more poorly than the non-
phylogenetic models. Thus, on statistical grounds the es-
timates from the nonphylogenetic versions are preferred.
To formally arbitrate between phylogenetic and nonphy-
logenetic models, the best approach is to introduce a
parameter that explicitly governs the strength of phylo-
genetic correlation. For example, Blomberg et al. (2003)
derive a transform from an Ornstein-Uhlenbeck process,
which introduces a parameter d into the covariance ma-
trix C that dictates the strength of phylogenetic corre-
lation; incorporating this into the models (as done for
the case of no measurement error in REGRESSIONv2.m)
would allow tests of phylogenetic strength and selec-
tion of the best estimate of b1 (see also Grafen, 1989;
Freckleton et al., 2002). In our experience with real data
sets, it is often the case that even a slight distortion of the
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TABLE 5. Estimates of functional relation slope b1 for log body mass and log hind-limb length for 13 species of lizards from Bauwens et al.
(1995).

Model Assumptions Phylogeny ML estimate of b1 Bootstrap ML estimate of b1 Log-likelihood

RMAa r = 0 I (star) 0.347 (0.25, 0.45)1 (0.24, 0.51)3 0.349 (0.25, 0.46)2 8.64
σy/σx = b1 C (true) 0.265 (0.18, 0.35)1 (0.17, 0.42)3 0.267 (0.19, 0.36)2 3.72

VRFb r = 0 I (star) 0.346 (0.23, 0.46)1 0.349 (0.24, 0.49)2 8.64
σy/σx = k = 0.36 C (true) 0.251 (0.15, 0.35)1 0.253 (0.16, 0.36)2 3.72

RMA with measurement error r = 0 I (star) 0.349 (0.25, 0.45)1 0.352 (0.26, 0.47)2 8.69
σy/σx = b1 C (true) 0.292 (0.20, 0.38)1 0.295 (0.22, 0.39)2 5.13

a Reduced major axis regression.
b Variance ratio fixed regression.
195% confidence interval from a t-distribution using the approximate standard error obtained from the information matrix in ML estimation.
295% confidence interval from parametric bootstrapping.
395% confidence interval from Equation 15.

phylogenetic tree to make it somewhat more star-like
yields substantially improved fits.

Note that the maximum log-likelihoods for the RMA
and VRF models with the same phylogenetic assump-
tions are the same. This is a result of the identifiabil-
ity problem of having seven parameters; different ways
of constraining the model to give five parameters (the
maximum that can be estimated) will all give the same
maximum likelihoods. The ML approximate confidence
intervals for b1 are close to the parametric bootstrap con-
fidence intervals, demonstrating that the approximation
is accurate. Finally, the ML approximate confidence inter-
vals are better (using the bootstrap confidence intervals
as the gold standard) than confidence intervals for RMA
regression given by Equation 15.

Simulation.—To explore the statistical properties of the
estimators for the different models, we simulated data
using the rmaM(C) model—the model with r = 0, b1 =
σy/σx, and phylogeny and measurement errors given by
Bauwens et al’s. (1995) example of 13 lizards—using pa-
rameter values obtained from the fit of the model to the
data (Table 5). For comparison, we also simulated the
same model after increasing the standard deviations of
the measurement errors by a factor of 4 (4× simulations).
For 2000 simulated data sets, we fit the same six models
as illustrated in the example (Table 5).

All estimators of b1 were unbiased in the 1× and 4×
measurement error simulations (Fig. 5a and c). Heuristi-
cally, this can be explained by noting that the estimate of
functional relation of y on x, b1, is the inverse of the func-
tional relation of x on y, 1/b1 for the RMA and VRF mod-
els. If there were, for example, consistent downward bias
in the estimate of the functional relationship, then the es-
timates of both b1 and 1/b1 would have to be downwards
biased, which clearly is not simultaneously possible.

Despite absence of bias, there is considerable variabil-
ity among models in the precision of the estimates of b1,
as revealed by their 95% inclusion intervals. Not surpris-
ingly, the greatest precision (smallest inclusion interval)
was achieved by the model used to simulate the data,
rmaM(C). The precision of the rma(C) model, however,
was almost identical. The VRF models both had poor pre-
cision, particularly when there was large measurement
error (Fig. 5c).

Surprisingly, the rmaM(C) model used to generate the
data did not always fit the simulated data best (Fig. 5b,
d); even in the high measurement error case (Fig. 5d), it
was the best-fitting model for only a little over 50% of the
simulated data sets, and in the low measurement error
case (Fig. 5b) the rma(C) model was selected as the best-
fitting model more frequently than the rmaM(C) model.

FIGURE 5. ML estimates of b1 in the functional relations model
given by Equation 13 for simulated data when the standard devia-
tions in measurement error are (a) those reported by Bauwens et al.
(1995) and (c) four times these values. For each of 2000 simulated data
sets, ML estimates of b1 were obtained for 6 model variants: rma(I) and
rma(C), reduced major axis regression (b1 = σ x/σ y, r = 0) with no phy-
logenetic correlation and phylogenetic correlation given by the lizard
phylogeny of Bauwens (1995) under Brownian motion evolution; vrf(I)
and vrf(C), the functional relations model having measurement error
variance ratio fixed (k = σ x/σ y, r = 0) with and without phylogenetic
correlation; and rmaM(I) and rmaM(C), reduced major axis regression
incorporating measurement error with and without phylogenetic cor-
relation. Error bars give 95% inclusion intervals for estimates. Numeri-
cal convergence to the ML estimate did not occur for 1.2% of the data set
estimation method combinations; nonconvergent cases were included
in the 95% inclusion intervals but not in the mean estimates of b1. (b
and d) The proportion of the 2000 simulated data sets corresponding
to (a) and (c), respectively, in which a given model had the highest
likelihood. Because the likelihoods of the rma and vrf models are the
same, these are combined.
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Furthermore, the nonphylogenetic models were selected
fairly frequently. In part this is due to the small sample
size of 13 species; using simulation studies, Blomberg
et al. (2003) showed that the reliable detection of phy-
logenetic signal (nonstar phylogenies) using univariate
data sets requires at least 20 species. This example pro-
vides caution about the statistical ability to identify the
correct statistical model from small data sets.

DISCUSSION

We have developed phylogenetic models that incor-
porate measurement error to investigate four statistical
problems: (i) univariate estimates of the mean, variance,
and phylogenetic signal of a trait; (ii) correlation and
principal component analysis; (iii) multiple regression;
and (iv) bivariate functional relation models, of which
reduced major axis regression is a special case. Mea-
surement error is ubiquitous in comparative studies, as
it encompasses a wide variety of sources of variation,
including variation caused by instrumentation and tech-
niques, variation among individuals within a given pop-
ulation, and variation among populations of the same
species. We have treated measurement error as variabil-
ity that is given by the standard error of mean trait val-
ues for species (or populations); when this information
is available, it can be used to improve statistical tests in
many cases.

When measurement error is large, it can obscure pat-
terns of variation and covariation in data. In the uni-
variate case, measurement error obscures the pattern of
phylogenetic correlation in trait values among species,
thereby leading to underestimates of the strength of phy-
logenetic signal measured for a trait. It can also adversely
affect estimates of ancestral values. For example, in a
study of muscle fiber type composition of 24 species of
lizards, in which four individuals were measured in each
species, Bonine et al. (2005) found that although the point
estimates for ancestral values were virtually unaffected
by incorporating standard errors, the confidence inter-
vals about them were narrowed, which would enhance
statistical power for testing hypotheses about particular
nodes.

Measurement error similarly obscures covariation be-
tween traits, leading to underestimates of correlation co-
efficients. The consequences of ignoring measurement
error are likely to be severe for univariate estimates of
phylogenetic signal and bivariate correlations. This is be-
cause measurement error increases the variance among
observed trait values for species, thus diminishing the
observed correlation among trait values. A particular
concern arises when comparing the strength of phy-
logenetic signal among numerous traits. For example,
Blomberg et al. (2003) compared 121 traits correspond-
ing to 35 phylogenetic trees, finding that behavioral
traits exhibit lower phylogenetic signal than body size,
morphological, life history, and physiological traits. Al-
though this result matches the long-standing idea that
behavioral traits are evolutionarily labile, it could also
be caused by behavioral traits having higher measure-

ment error, as Blomberg et al. (2003) duly noted. Not all
of the data sets analyzed by Blomberg et al. (2003) in-
cluded standard errors of the species trait values, but fu-
ture analyses could test the hypothesis that behavioral
traits show lower phylogenetic signal simply because
they show greater within-species standard errors.

In regression, measurement error leads to bias, gener-
ally downward, in the estimates of slopes. The magni-
tude of this bias obviously depends on the magnitude of
the measurement error. However, the consequences of
this bias for statistical tests depends also on the number
of species analyzed and hence the precision of the esti-
mates of the slope. When the number of species is large,
the slope estimates have lower standard errors. This
heightens the danger of bias caused by measurement er-
ror, because the wrong estimate is “known” with greater
precision. This argument also applies to the other statis-
tical models we have investigated, leading to the some-
what counter-intuitive recommendation that it is more
important to incorporate measurement error when ana-
lyzing large data sets (see also Harmon and Losos, 2005).
This recommendation makes more sense, however, when
realizing that increasing the number of species will in-
crease information about regression slopes, correlations,
etc., thereby reducing the variation in parameter esti-
mates that is not associated with measurement error and
hence making the variation due to measurement error
relatively greater. The greater the proportion of variation
in parameter estimates caused by measurement error, the
greater is the impact of not accounting for measurement
error.

RMA regression and other forms of bivariate general
structural relation models are often recommended as re-
placements for simple regression when there is variation
in both x and y variables; thus, they are recommended
when measurement error exists. We prefer to think of
the broad suite of functional relation models explicitly
in terms of Equation 13, in which there is a linear re-
lationship between traits x and y that is modified by
variation in x and y, εx and εy, that might or might not
depend on phylogeny. Measurement error is then ad-
ditional within-species variation (from any number of
sources) that is known to the researcher (i.e., standard
errors). The explicit accounting of sources of variation
given by Equation 13 makes clearer the assumptions of
RMA regression and other functional relation models.
For the special cases of functional relation models in
which the estimate of the slope b1 of y on x is the recipro-
cal of the slope 1/b1 of x on y (such as RMA regression),
the estimates of the slope are unbiased even when mea-
surement error is not explicitly accounted for. This is a
reason to use RMA regression when a researcher knows
that measurement error exists but does not know its mag-
nitude. (Of course, one must always be cautious when the
traits are actually independent, because RMA regression
gives the nonsensical result that the slope is unity for
independent traits.) Despite being unbiased, however,
incorporating phylogeny and measurement error makes
the estimates of the slope b1 more precise. Unfortunately,
the increase in precision requires knowing which model
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best fits a data set, and when data sets contain few
species, identifying the best-fitting model may be statisti-
cally difficult (Fig. 5b and d). Thus, our recommendation
is to approach functional relation problems with a vari-
ety of plausible models, examine each, and determine the
robustness of any conclusions to the choice of models.

It is important to note that RMA regression is a bi-
variate technique and that it is not actually a formal
“measurement error method” (see also Rayner, 1985:417–
418); for example, we analyzed RMA regression models
with and without the formal inclusion of measurement
error. This raises important issues when one wishes to
estimate a functional relations slope but also needs to
control statistically for nuisance variables and/or other
factors. As an example of the former, some studies re-
port whole body mass while others report fat-free body
mass. As an example of the latter, whole clades may vary
in general body shape, thus causing a “grade shift” (e.g.,
see Garland et al., 1993, 2005) in the relation between,
say, leg length and body size. A bivariate slope fitted to
such heterogeneous data will be inappropriate. Unfor-
tunately, RMA regression for more than two traits has
yet to be developed, although it could be derived from
a generalization of Equation 13. Until such methods are
developed, practitioners might adopt a strategy of using
(multiple) regression to remove effects of other covari-
ates and factors, saving residuals, and analyzing residu-
als with bivariate RMA regression.

Throughout this article we have performed statistical
tests assuming that interspecific correlations in trait val-
ues are known with certainty, given either by a star phy-
logeny or by the true phylogeny (which we assume in
known without error) under the assumption of Brown-
ian motion character evolution. These two assumptions
about interspecific correlations can be considered as ex-
tremes in a continuum of phylogenetic signal (Garland
et al., 2005). Rather than pick one of the extremes, the
analyses can be performed by explicitly incorporating
the strength of phylogenetic signal as a parameter in the
models (Grafen, 1989; Freckleton et al., 2002; Huey et al.,
2006). In this case, the phylogenetic covariance matrix
C (or Cx and Cy, etc.) contains parameters that must be
estimated. For example, Hansen (1997), Blomberg et al.
(2003), and Butler and King (2004) provide branch-length
transforms that correspond to evolution occurring as an
Ornstein-Uhlenbeck process, with a parameter measur-
ing the strength of phylogenetic signal (although the ex-
act parameterization of the OU process differs among
those sources). This parameter can be incorporated into
the statistical models by letting the phylogenetic corre-
lation matrices C depend on this parameter (Huey et al.,
2006; Ives and Godfray, 2006). The parameter can then be
estimated simultaneously with all of the other param-
eters of the model. A particular advantage of this ap-
proach is that it overcomes the need to identify whether
the model using the true phylogeny fits the data better
than the model with a star phylogeny (e.g., Table 5); ar-
bitration between these extremes is made while estimat-
ing the Ornstein-Uhlenbeck parameter simultaneously

with the other parameters. In general, incorporating pa-
rameters that control the phylogenetic covariance ma-
trix C is straightforward for all of the different problems
we have considered in this article, and the estimation
techniques can be applied with little modification, as
we intend to provide in future versions of our Matlab
programs.

Throughout our analyses, we have assumed that infor-
mation on standard errors for mean species trait values
are available. However, even more limited information
can be incorporated into the analyses. For example, in-
corporating an estimate of the average among-species
measurement error for a trait can be done by simply
giving all species the same standard error for a trait, or
by weighting measurement errors according to sample
sizes (Appendix 3). Furthermore, if measurement errors
are assumed to be the same for all species, then mea-
surement errors can themselves be estimated along with
the other parameters in the model. This involves esti-
mating the variance σ 2

m in the models used throughout
this article. This approach is analogous to models that
separate among-species variation into phylogenetic and
nonphylogenetic components (Lynch, 1991; Freckleton
et al., 2002; Housworth et al., 2004; Rochet et al., 2006);
in this case, the nonphylogenetic component represents
measurement error.

Throughout this article we have used EGLS, ML, and
REML estimation methods. For most problems and data
sets, we suspect that they will all give similar results, pro-
vided measurement error is not too large. For most of the
simulations we analyzed, REML outperformed EGLS,
which in turn outperformed ML estimation. This does
not mean, however, that ML estimation should not be
used. An advantage of ML estimation is that the like-
lihoods from different models can be compared using a
likelihood-ratio test, or the likelihood can be used to com-
pute the Akaike information criterion (AIC) for model
comparisons (Burnham and Anderson, 1998). In general,
we suggest multiple methods be used; TG will provide
Matlab (MathWorks, 1996) code that performs all three
estimation methods for most of the models we have pre-
sented.

Much of the work developing phylogenetically based
comparative methods over the last two decades has been
done largely in isolation from a large body of statis-
tical literature dealing with correlated data (e.g., Ives
and Zhu, 2005). Nonetheless, there is much to be gained
by applying relatively off-the-shelf approaches to com-
parative problems. For example, Paradis and Claude
(2002) recently described how generalized estimating
equations can be used to apply phylogenetic compar-
ative methods to noncontinuous data, opening up com-
parison of discrete traits to phylogenetic analyses. The
models presented throughout this manuscript are ap-
plicable to a broad range of comparative problems, and
they easily surrender to well-worn statistical approaches.
Answers to a wide range of additional problems in com-
parative analyses probably await within the statistical
literature.
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APPENDIX 1: ESTIMATION METHODS

This appendix summarizes the estimation techniques we use: iterative
EGLS, ML, and REML. We also give an overview of our parametric
bootstrapping approach. We have structured the models throughout
the article so that the estimation techniques can be applied in a similar
way for all models.

Iterative EGLS Estimation
Estimated generalized least-squares is an extension of GLS for the

case in which unknown parameters occur in the covariance matrix
(Judge et al., 1985:169–187). For the univariate case given in Equation 5,
the problem is that � (θ ) = C + (σ 2

m/σ 2)M has an unknown parame-
ter θ = (σ 2

m/σ 2) that rules out application of GLS. EGLS is a standard
procedure, and our iterative approach is a simple extension in which
EGLS is repeated to obtain successively better estimates.

The iterative EGLS is initiated by choosing a value of θ ; zero is an
obvious choice in most cases. Conditioned on this value of θ , GLS can
be used to estimate the mean a and variance σ 2 from Equations 3 and
4. Because σ 2

m is known, a new estimate of θ is σ 2
m[(N − 1/N)σ̂ 2

m]−1; here,
the estimate of σ 2 is multiplied by (N − 1)/N to give the maximum
likelihood estimate, rather than the unbiased estimate given by Equa-
tion 4. This new value of θ is used to update � (θ ) = C + θM, and the
procedure is iterated until estimates of a and σ 2 converge.

The multivariate models are slightly more complex, and they em-
ploy a method-of-moments approach. For the case of regression (Equa-
tion 12), let �x (θx) = Cx+ θ xMx and �y (θxy, θy) = Cy+ θ xyCx+ θyMy,
where θ x = σ 2

mx/σ 2
x, θ xy = b2

1σ
2
x/σ 2

y, and θy = σ 2
my/σ 2

y. With initial val-
ues of θ x, θxy, and θy to give �x (θx) and �y(θxy, θy) estimates of ax and
σ 2

x, and ay and σ 2
y are computed from Equations 3 and 4. Using the

method of moments, an estimate of b1 is given by

b̂1 = 1
σ̂ 2

x

[
(X − âx)′C−1

xy (Y − â y)

N − 1
− rmσmxσmyMxy

]
.

(A1)

These estimates of σ 2
x , σ 2

y , and b1 are then used to update θx, θxy, and θy,
and the procedure is iterated until the estimates converge.

Approximate confidence intervals for the parameter estimates can
be obtained using standard GLS formulae, treating �(θ ) as known (i.e.,
ignoring the uncertainty arising from estimating parameters θ ). In ad-
dition, parametric bootstrapping can be used, which is particularly
convenient for iterative EGLS because EGLS takes relatively little com-
puting time. The statistical properties of EGLS estimators can be com-
plex, but in general the EGLS estimates of a and b1 will be consistent,
meaning that for large enough sample size the probability distributions
of the estimators converge to the true parameter values (Judge et al.,
1985:175–177). In practice, we have found that the iterative EGLS esti-
mates are often similar to ML and REML estimates, and the iterative
EGLS outperforms ML and REML for some tasks, such as estimating
the phylogenetic signal K *.

ML Estimation
Maximum likelihood estimation consists of using the matrix �(θ ),

containing parameters θ that need to be estimated, to construct the
likelihood function, and then maximizing the likelihood function to
obtain those parameter values for which the observed data set is the
most likely. The log-likelihood function is

L(a, σ 2, θ |X) = − N
2

ln(2π ) − 1
2

ln{det[σ 2�(θ )]}

− 1
2

(X − Za)′[σ 2�(θ )]−1(X − Za) (A2)

For the univariate case, a = a is a scalar giving the phylogenetic mean,
and Z is the N × 1 vector of ones. For correlation of p traits, a is the
1 ×p vector containing the means of the traits, and Z is the pN ×p

matrix given by Ip×p ⊗ 1N×1 where Ip×p is the p × p identity matrix,
1N×1 is a N × 1 vector of ones, and ⊗ denotes the Kronecker (inner)
product. For regression with p − 1 independent variables, a is the 1 ×p
vector containing the intercept and slopes, and Z is the N × p matrix
containing ones in the first column and the independent variables in the
remaining columns. To speed the numerical maximization of the log-
likelihood function, it is possible to concentrate the likelihood function
by replacing a and σ 2 by their GLS estimates conditioned on θ and
maximizing over θ alone. To account for the known bias of ML estimates
of variances, we multiplied the ML estimates of variances by N/(N–p)
to obtain a less biased estimate. Finally, maximization must be restricted
so that estimates of variances are greater than zero.

Special considerations are necessary for the case of correlation to
guarantee that the covariance matrix σ 2�(θ ) remains positive definite
while the log-likelihood function is maximized. Rather than maximize
over the correlation coefficients for the multivariate case, we instead
maximized over the parameters qi j defined such that the correlation
matrix R(θ )= Q(θ )2, where Q(θ ) is symmetric having values of 1 along
the diagonal and values of qi j in the off-diagonals. Because R(θ ) is the
square of a symmetric matrix, it is necessarily positive definite. After
maximizing over values of qi j constrained to be between −1 and 1,
estimates of the correlation coefficients are given as the off-diagonal
elements of R(θ ).

An advantage of ML estimation is that it can be used to pro-
vide approximate confidence intervals for the parameter estimates. In
particular, let I (ϕ) = − ∂2

∂ϕ2 L(ϕ|X) be the observed information matrix
calculated at the ML parameter estimates ϕ. Then the approximate co-
variance matrix for the parameter estimates ϕ is given by I (ϕ)−1. From
this, standard errors and asymptotic confidence intervals can be calcu-
lated (Judge et al. 1985:177–182). Unfortunately, this is only an asymp-
totic result, and the accuracy of the approximation for small samples
is generally unknown.

REML Estimation
Restricted maximum likelihood estimation is a variant of ML estima-

tion in which the likelihood function is partitioned into components, al-
lowing estimation of variance parameters in the model independently
from the parameters involving means (Patterson and Thompson, 1971;
Cooper and Thompson, 1977; Smyth and Verbyla, 1996). The marginal
log-likelihood function from which variance parameters are estimated
is (Harville, 1974)

L(σ 2, θ |X) = − N − p
2

ln(2π ) + 1
2

ln[det(Z′Z)]

− 1
2

ln{det[σ 2�(θ )]}

− 1
2

ln(det{Z′[σ 2�(θ )]−1Z})

− 1
2

(X − ZâGL S)′ [σ 2�(θ )]−1 (X − ZâGL S)

(A3)

where âGL S is the GLS estimate of a, and the remaining terms are as
defined for ML estimation.

In general, we found that REML estimates of the variance parame-
ters were less biased than those obtained from ML and iterative EGLS.
Estimates of the parameters involving means (e.g., a , b0, and b1), how-
ever, were very similar to those obtained from ML and iterative EGLS.
Confidence intervals for parameters involving means can be approxi-
mated using the formulae for standard GLS with the fitted covariance
matrix σ 2�(θ ) or asymptotically using the information matrix.

Parametric Bootstrapping
For all estimation approaches, we used parametric bootstrapping to

obtain confidence intervals. Parametric bootstrapping is useful because
it not only produces confidence intervals but also identifies bias in the
estimates. We performed parametric bootstrapping for a given model
by first estimating parameters and then using the model fitted with
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these estimates to simulate 2000 data sets. For each of the simulated
data sets, we estimated the parameters of the model. The resulting
2000 sets of parameter estimates approximate the distribution of the
parameter estimators under the assumption that the model (with its
fitted parameter values) is correct. Thus, the 95% inclusion intervals
for the 2000 estimates give the approximate 95% confidence intervals
for the parameter estimates. Bias in the estimates is revealed if the mean
of the 2000 simulated parameter estimates differs substantially from
the parameter values estimated from the data and used to construct
the simulated data sets.

APPENDIX 2: LOG-TRANSFORMING DATA WITH
MEASUREMENT ERROR

Most empirical comparative studies report means and standard er-
rors for species on the arithmetic scale. However, for many problems,
such as allometric analyses, data need to be log-transformed before
analysis. When measurement error exists, log-transformation requires
not only transforming the standard error of the measured values but
also the mean of the measured values. Assuming that the observed
values follow a log-normal distribution with mean m and variance v,
the mean and variance of the log-transformed data are x̄ = log(m) − v

2
and σ 2 = log( v

m2 + 1). These relationship can be derived directly from
the probability density function of a log-normal distribution.

APPENDIX 3: MEASUREMENT ERROR WITH SMALL
SAMPLE SIZES

When sample sizes used to estimate trait values for some or all
species are small, measurement error can be obtained by averaging
among species. Suppose there are N species with standard errors SEi

(i = 1, . . . , N) taken from ni individuals. Assume that each observation
on each individual is measured with the same error. Let σ̂i = √

ni SEi ,
and let σ̄ 2 = 1

N

∑N

i=1
σ̂ 2

i . Then the standard error for a species with ni

individuals estimated by pooling species is SE(ni ) = σ̄ /
√

ni . For data
sets in which one or more species are represented by a single individual
(ni = 1), these species can be excluded from the calculations and then
assigned standard errors SE(1) = σ̄ .

As an example, suppose there are two species with standard errors 2
and 3, and sample sizes 16 and 9. Then σ̄ 2 = 1

2 (
√

16 × 2 + √
9 × 3) = 17

2 ,
and the standard errors estimated from pooling species are SE(16) =
2.125 and SE(9) = 2.833.

APPENDIX 4: DEMONSTRATION THAT EQUATION
13 IS THE MODEL OF RAYNER (1985)

In the general structural equation model of Rayner (1985), the slope b1

of the relationship between two traits x and y is the value that minimizes
the residual sum-of-squares given by

S2
R = b2

1 Sxx − 2b1 Sxy + Syy

b2
1 Sξξ − 2b1 Sξη + Sηη

(A4)

where Sxx , Sxy, and Syy are the sums-of-squares of the values X and
Y, and Sξξ , Sξη , and Sηη are the variances and covariances of the error
terms. Here we derive the same expression from Equation 13 for the
case when there is no phylogenetic correlation (Cγ x = Cx = Cy = I) and
measurement error is zero (Mx = My = Mxy = 0). In this case, Sξξ =
σ 2

x Sξη = rσ xσ y, and Sηη = σ 2
y.

Let Z be the N × 2 matrix whose first and second columns consist
of X − x̄ and Y − ȳ. From Equation 13, the covariance matrix of X and
Y is given by

V = E
{

Z′Z
}

=
(

σ 2
γ + σ 2

x b1σ
2
γ + rσxσy

b1σ
2
γ + rσxσy b2

1σ
2
γ + σ 2

y

)
(A5)

From this, the residual sum-of-squares, after some algebra, is

S2 = Z′V−1Z

=
Sxx

(
b2

1σ
2
γ + σ 2

y

)
− 2Sxy

(
b1σ

2
γ + rσxσy

)
+ Syy

(
σ 2

γ + σ 2
x

)
b2

1σ
2
γ σ 2

x − 2b1σ 2
γ rσxσy + σ 2

γ σ 2
x + σ 2

x σ 2
y − (rσxσy)2

(A6)

The least squares estimates of b1 and σ 2
γ are those values that minimize

the value of S2. Taking the derivatives of S2 with respect to b1 and σ 2
γ

and setting them equal to zero,

∂S2

∂b1
= b1 Sxx − Sxy

b1σ 2
x − rσxσy

− S2 = 0

∂S2

∂σ 2
γ

= b2
1 Sxx − 2b1 Sxy + Syy

b2
1σ

2
x − 2b1rσxσy + σ 2

x

− S2 = 0
(A7)

The value of b1 that minimizes the sum-of-squares given by Rayner
(Equation A4) is

∂S2
R

∂b1
= b1 Sxx − Sxy

b1σ 2
x − rσxσy

− b2
1 Sxx − 2b1 Sxy + Syy

b2
1σ

2
x − 2b1rσxσy + σ 2

x

= ∂S2

∂b1
− ∂S2

∂σ 2
γ

= 0 (A8)

Thus, the least-squares estimate of b1 computed for the model given by
Equation 13 in the text equals the least-squares estimate of b1 computed
from Rayner’s function (Equation A4).




