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Abstract.—We develop statistical methods for phylogenetic logistic regression in which the dependent variable is binary
(0 or 1) and values are nonindependent among species, with phylogenetically related species tending to have the same
value of the dependent variable. The methods are based on an evolutionary model of binary traits in which trait values
switch between 0 and 1 as species evolve up a phylogenetic tree. The more frequently the trait values switch (i.e., the higher
the rate of evolution), the more rapidly correlations between trait values for phylogenetically related species break down.
Therefore, the statistical methods also give a way to estimate the phylogenetic signal of binary traits. More generally, the
methods can be applied with continuous- and/or discrete-valued independent variables. Using simulations, we assess the
statistical properties of the methods, including bias in the estimates of the logistic regression coefficients and the parameter
that estimates the strength of phylogenetic signal in the dependent variable. These analyses show that, as with the case
for continuous-valued dependent variables, phylogenetic logistic regression should be used rather than standard logistic
regression when there is the possibility of phylogenetic correlations among species. Standard logistic regression does not
properly account for the loss of information caused by resemblance of relatives and as a result is likely to give inflated type I
error rates, incorrectly identifying regression parameters as statistically significantly different from zero when they are not.
[Analysis of covariance; ancestor reconstruction; comparative methods; generalized least squares; independent contrasts;
morphometrics; phylogeny; regression for binary outcomes.]

Comparative biologists have come to accept the idea
that multispecies data sets (e.g., for the relation of brain
size to body size) should be analyzed with methods
that account for ”phylogenetic signal,” the tendency for
related species to resemble each other (Blomberg and
Garland 2002). Under an assumption of Brownian
motion–like character evolution, any hierarchical (i.e.,
nonstar) phylogenetic tree implies that some amount
of phylogenetic signal should exist for the phenotypes
of a set of species (Freckleton et al. 2002; Blomberg et
al. 2003). In general, this resemblance of relatives will
violate one or more assumptions of most common sta-
tistical methods, such as residuals from a regression
model being independent and identically distributed
(Felsenstein 1985, 2004; Harvey and Pagel 1991; Garland
et al. 2005).

Several approaches have been developed to deal with
the statistical issues caused by phylogenetic noninde-
pendence (reviews in Harvey and Pagel 1991; Martins
and Hansen 1996; Rohlf 2001; Garland et al. 2005). If the
only concern is hypothesis testing, then it is possible
to apply conventional statistical methods (e.g., analysis
of variance to compare ecologically defined groups of
species), compute familiar test statistics (e.g., F ratios),
and then compare those test statistics with null distribu-
tions that have been derived by simulating or random-
izing data in accordance with a specified phylogenetic
tree and assumed model of character evolution (Martins
and Garland 1991; Garland et al. 1993; Lapointe and
Garland 2001). Alternatively, a ”known” phylogenetic
tree (topology and branch lengths) and an assumed
model of character evolution can be used to transform
the tip data to make them have equal expected variances
and remove correlations related to phylogenetic signal.

This is the basis for Felsenstein’s (1985) well-known
method of phylogenetically independent contrasts (PIC)
(Garland et al. 1992). Data containing phylogenetic cor-
relations can also be analyzed by the techniques of
generalized least squares (phylogenetic GLS or PGLS:
Grafen 1989; Martins and Hansen 1997; Pagel 1997;
Duncan et al. 2007). In fact, PIC is an algorithm that con-
stitutes one way of solving such models and is a thus
a special case of PGLS methods. Under the assumption
of Brownian motion character evolution, PGLS and PIC
calculations yield the same parameter estimates and
statistical tests (Garland and Ives 2000; Rohlf 2001).

Grafen (1989) first noted that it is often statistically
advantageous to estimate a transformation of phyloge-
netic branch lengths (especially if the branch lengths
used are entirely arbitrary) simultaneously with esti-
mation of other parameters in a statistical model (e.g.,
regression slopes); in effect, this involves estimating
the strength of phylogenetic signal in the residuals
at the same time as estimating other parameters. Al-
though such methods have often been lumped un-
der the rubric of PGLS, they cannot actually be solved
with GLS methods per se because they contain one or
more parameters governing the phylogenetic variance–
covariance matrix (Forsyth et al. 2004; Huey et al. 2006;
Duncan et al. 2007; Lavin et al. 2008). To incorporate
the estimation of phylogenetic signal along with other
parameters, models must be built on specific assump-
tions about an evolutionary process that gives the
expected variance–covariance structure of the resid-
uals (e.g., an Ornstein–Uhlenbeck [OU] evolution-
ary process intended to mimic stabilizing selection;
Felsenstein 1988). Once these models are formulated,
techniques—such as maximum likelihood (ML) or
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restricted ML—that estimate both the mean and the
variance components of the model can be applied. An
example of this type of model is RegOU, which imple-
ments regression for continuous-valued traits under the
assumption that the residual variation is described by
an OU process containing a parameter to estimate the
strength of phylogenetic signal (Huey et al. 2006; Lavin
et al. 2008).

Most commonly, statistical analyses of comparative
data involve dependent variables that are continuously
distributed (e.g., home range area, metabolic rate) or
at least ordinal (e.g., scale counts of squamate reptiles).
Less commonly, the dependent variable may exist in
only 1 of 2 possible states, such as which sex is heteroga-
metic. The statistical problem presented by categorical
(discrete) dependent variables is distinct from the prob-
lem of discrete independent variables. In fact, as with
conventional statistical analyses, independent variables
that are categorical traits are easy to deal with using
dummy variables when applying PGLS (including PIC)
or RegOU-type analyses (Grafen 1989; Garland et al.
1993; Martins and Hansen 1997; Pagel 1997; Duncan
et al. 2007; Lavin et al. 2008).

Binary dependent variables analyzed by compara-
tive biologists are of many types, including whether a
species has temperature-dependent sex determination,
whether a female primate advertises her estrus, whether
an insect has wings, whether a parasite has an interme-
diate host, whether an animal builds a nest, whether the
organism inhabits lakes or the ocean, and whether the
geographic distribution of a species is restricted to a sin-
gle island or not. However, most of these traits still must
evolve through normal microevolutionary mechanisms
during which a population will transition from individ-
uals being 100% of one type to being 100% of another.
In some cases, the evolutionary transition may occur so
rapidly that few populations with ”mixed” phenotypes
are to be found. Nonetheless, the evolutionary transi-
tion of a population (or entire species) will take a finite
number of generations, and we would anticipate the oc-
currence of such binary traits to reflect the phylogenetic
history of the species that exhibit them (i.e., they should
show phylogenetic signal).

Binary dependent variables also arise for traits that
are inherently continuously valued, yet nonetheless are
best, or at least most conveniently, scored as distinct
categories. For example, bird species might be catego-
rized as either sedentary or migratory, even though
species exhibit a range of migratory behaviors in terms
of both the proportion of the population migrating and
the distance of migration. To deal with this, Boyle and
Conway (2007) analyzed data on bird migration first us-
ing the dichotomous categorization of sedentary versus
migratory and then for the subset of species show-
ing some migration, treating migratory behavior as a
continuous variable (see also Thom et al. 2004). When
available, continuous-valued data are preferred because
they should typically increase statistical power to de-
tect relations in the data (Garland et al. 1993; Al-kahtani
et al. 2004; Munoz-Garcia and Williams 2005). Of course,

when quantitative information is not available, treating
continuous-valued traits as categorical is unavoidable.

Binary dependent variables might also be used when
a continuous-valued trait is bimodally distributed or
often takes the value 0, thus violating statistical as-
sumptions of standard tests. For example, even though
diet composition is a continuous variable, in many lin-
eages of animals most species are either carnivorous
or herbivorous, with few being omnivorous. Similarly,
in the fish genus Poeciliopsis most species have a low
matrotrophy index, indicating little placental transfer of
nutrients, but some have very high values and almost
none have intermediate values (Reznick et al. 2002); the
high-matrotrophy index species are almost discretely
different from others. In some cases, reasonable hypoth-
esis testing (adequate type I error rates) with a binary
dependent variable might be accomplished by using
ordinary regression in combination with Monte Carlo
simulations using a phylogenetic tree to obtain appro-
priate statistical distributions (Martins and Garland
1991; Garland et al. 1993; Diaz-Uriarte and Garland
1996). However, better parameter estimates and greater
power should be obtainable through the explicit con-
struction of a statistical model for binary dependent
variables.

Here, we develop a model of evolution and a cor-
responding approach to statistical estimation for phy-
logenetic logistic regression in which there is a binary
dependent variable (Y) and zero, one, or more indepen-
dent variables (X). The independent variables can be
continuous and/or discrete, even when there is only a
single independent variable. This sets our method apart
from existing methods for analyzing binary dependent
variables that do not allow for continuous-valued pre-
dictors (Maddison 1990; Pagel 1994; Ridley and Grafen
1996; Grafen and Ridley 1997; Pagel 1997; Schluter et al.
1997; Cunningham et al. 1998; Lorch and Eadie 1999;
Schultz and Churchill 1999; Perez-Barberia et al. 2002;
Lindenfors et al. 2003; Pagel and Meade 2006). Our ap-
proach involves generalized linear models (GLMs) that
can be used to analyze data from the exponential family
of statistical distributions, including Gaussian (nor-
mal), Poisson, and binomial distributions (McCullagh
and Nelder 1989). The use of GLMs is well established
in a phylogenetic context (Martins and Hansen 1997),
although most of this work has addressed Gaussian-
distributed, continuous-valued dependent variables.
Paradis and Claude (2002) proposed operationalizing
phylogenetic GLMs for binary dependent variables
using generalized estimating equations (GEEs), and
Forsyth et al. (2004) independently implemented phy-
logenetic GEEs to analyze the invasiveness of species,
with the binary dependent variable invasive versus non-
invasive. Although related to the approach we develop,
these methods using GEEs require the specification of
an expected variance–covariance matrix reflecting phy-
logenetic associations. As we describe here, the matrix
constructed from the branch lengths of phylogenetic
trees under the assumption of Brownian motion evolu-
tion (Martins and Hansen 1997) does not give the correct
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correlation structure for evolutionary models of binary
traits.

In addition to correctly specifying a structure of the
variance–covariance matrix, our approach also includes
an estimated parameter that governs the strength of
phylogenetic signal in the dependent variable. There-
fore, just as recent methods for phylogenetic regression
estimate phylogenetic signal of residuals simultane-
ously with regression coefficients (Grafen 1989; Hansen
1997; Freckleton et al. 2002; Huey et al. 2006; Duncan
et al. 2007; Lavin et al. 2008), our phylogenetic logis-
tic regression does not require the a priori assignment
of phylogenetic signal but instead allows the data to
dictate its magnitude in the statistical model. Thus, the
outcome of fitting the model to data may be an indica-
tion that the residuals contain no phylogenetic signal,
so that the trait in question can be viewed as having
evolved along a star phylogeny. In such cases, however,
it is important to realize that statistical tests will not be
the same as for conventional (nonphylogenetic) analy-
ses because the additional parameter for the strength of
phylogenetic signal has been estimated and thus there
is added uncertainty from this estimation in the model.

Below, we first develop a model of evolution for a
single binary variable without considering independent
variables. This leads to a statistical test for phylogenetic
signal of a binary trait analogous to the tests developed
by Freckleton et al. (2002), Blomberg et al. (2003), and
Housworth et al. (2004) for continuous-valued traits.
We illustrate these methods by analyzing the data
set of Brashares et al. (2000) on antelope antipredator
behavior (scored in a binary fashion) and perform simu-
lations to check the statistical properties of the parame-
ter estimators. We then consider independent variables,
illustrating the statistical methods again with the data
set of Brashares et al. (2000) and performing simu-
lations to investigate the statistical properties of the
estimators. Complete documentation of the methods is
given with the Matlab (MathWorks 1996) computer code
“PLogReg.m” (see Supplementary Material available
from http://www.sysbio.oxfordjournals.org).

UNIVARIATE CASE: PHYLOGENETIC SIGNAL

The univariate case corresponds to phylogenetic lo-
gistic regression applied in the absence of independent
variables, so there is only a single parameter that deter-
mines the mean. For this case, we construct a model of
phylogenetic change of a binary trait by assuming the
trait evolves up a phylogenetic tree. During each small
increment of time, there is some probability α1 that the
trait switches to 1 if it is currently 0 and some other
probability α0 that the trait switches to 0 if it is cur-
rently 1; thus, evolution up the phylogenetic tree takes
the form of a Markov process, as has been used in pre-
vious models of evolution of binary traits (e.g., Pagel
1994). This process of evolution leads to a probability
distribution for the trait values at the tips of the phy-
logenetic tree. The absolute magnitudes of α0 and α1
set the rates of transitions between 0 and 1 and hence

affect the strength of phylogenetic correlations observed
among tip species. For example, if α0 and α1 have large
values, then transitions between 0 and 1 occur rapidly,
and this will break down the tendency for closely related
species to resemble each other.

Although we make these specific assumptions about
the evolutionary process to produce a statistical model,
we recognize that the evolution of a real trait through
time is unlikely to follow this process precisely. For
example, the transition probability might vary among
branches of the phylogenetic tree. Nonetheless, bas-
ing our analyses around a specific (and rather simple)
model of evolutionary change makes it possible to de-
rive an explicit statistical distribution for the values of a
binary trait among species.

To specify the model precisely, let Yi (i = 1, 2, . . ., n)
denote a random variable for a trait taking values 0 or 1
for a collection of n phylogenetically related species and
let Y denote the vector of random variables Yi. (Here,
we follow the standard conventions of using uppercase
italics Y for a random variable corresponding to trait Y,
lowercase italics y for a realization of the random value
Y, uppercase bold Y for a vector of random variables,
and lowercase bold y for a vector of realizations.) Let
the n × n matrix W describe the phylogenetic tree, with
diagonal elements wii giving the distance from the base
to tip i and off-diagonal elements wij giving the length
of the shared branch leading to the last common an-
cestor of species i and j. Assume trait Y evolves up the
phylogenetic tree and that the transition rates α0 and α1
are constant, so that branch lengths are proportional to
time. Here, we assume that the tips of the tree are con-
temporaneous and set the diagonal elements of W to 1,
although we discuss the case of noncontemporane-
ous tips below. With this restriction on W, the matrix
2(1 − W) gives the distance between each pair of tips
on the phylogenetic tree, where 1 is the n × n matrix
with all elements 1. The correlation matrix for Y given
an overall rate of transitions α = α0 + α1 and assuming
the process is at stationarity is (e.g., Martins and Hansen
1997, equation 6c)

C(α) = exp(−2α(1−W)), (1)

where the exponential is applied individually to each el-
ement of the matrix. For a given tree size and shape, the
parameter α is associated with phylogenetic signal be-
cause the larger α, the greater the rate of transitions and
hence the lower the phylogenetic correlations among
species (see, e.g., Blomberg et al. 2003). Specifically,
as α approaches infinity, C(α) approaches the identity
matrix. If transition rates α were very high then the
asymptotic probability of being in State 1 is μ = α1

α0+α1
.

Thus, the model can be formulated in terms of 2 param-
eters: μ that gives the asymptotic expectation of Yi and
α that gives the rate at which phylogenetic correlations
among species are lost.

We have chosen to use μ and α as parameters in
our statistical model because they have intuitive inter-
pretations and increase the correspondence between the
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model and standard logistic regression. Nonetheless,
the model could also be formulated in other parame-
ters, for example, α0 and α1 (i.e., the transition rates).
An important statistical limitation, however, is that only
2 pieces of information are available from data sets, the
mean value of Y and the correlation in Y among species.
Therefore, it is only possible to estimate 2 parameters.
This limitation explains some strategic decisions we
made in model formulation. For example, in deriving
the correlation matrix C(α) we assumed that the pro-
cess is at stationarity, so the probability that the trait
at the base of the phylogenetic tree has State 1 equals
μ, the same as at the tree tips. If we were to assume that
the process were not at stationarity, then the correlation
matrix would be m(1−m)

m0(1−m0)
C(α), where m is the expected

trait value at the tips and m0 is the expected trait value at
the base of the phylogenetic tree. However, this model
now has 3 parameters (m, m0, and α) and only 2 can
be estimated, so nothing is gained by this formula-
tion. Therefore, because it leads to no loss of generality,
we have used the assumption that the process is at
stationarity.

The correlation matrix C(α) has a different structure
from the correlation matrix that is used for phyloge-
netic regression of continuous-valued traits (Martins
and Hansen 1997; Garland and Ives 2000; Lavin et al.
2008). For continuous-valued traits under Brownian
motion evolution, the correlations in trait values be-
tween species are proportional to the lengths of shared
branches (off-diagonals) given in the matrix W, whereas
for our evolutionary model of a binary process the
correlations are given by C(α). The structure of C(α)
is identical to that produced for continuous-valued
traits following an OU model of evolution under the
assumption that the process is at stationarity (Hansen
and Martins 1996; Martins and Hansen 1997; Butler and
King 2004). The derivation of the OU process given in
Blomberg et al. (2003) differs from that given in these
citations by assuming that the trait value at the base
of the phylogenetic tree is known with zero variance;
this has the advantage of producing a transform that
returns the original tree (i.e., W) when the parameter
giving phylogenetic signal d = 1. This assumption is
not an option for the case of binary variables because
the variance is determined strictly by the mean. Al-
though the matrix C(α) is never identical to W, when
α = 1 the strengths of phylogenetic correlations (off-
diagonal elements) are of similar overall magnitude
for C(α) and W, and therefore α = 1 serves as a rough
reference point to gauge the strength of phylogenetic
signal. In other words, when α = 1 the magnitude
of phylogenetic correlations among tip values of the
trait is approximately of the same magnitude as the
phylogenetic correlations that one would expect for
continuous-valued traits evolving in a Brownian mo-
tion fashion up the same tree. The relationship between
C(α) and W, however, depends on the structure of W
and therefore should be considered on a case-by-case
basis; the program PLogReg.m outputs the matrix C(α)

so that it can be examined directly (see Supplementary
Material).

Because the statistical model requires input of the
matrix W that gives expected phylogenetic correlations
among species, special consideration needs to be made
when a phylogenetic tree has noncontemporaneous tips.
The phylogenetic correlations in our model (equation
(1)) depend on the branch-length (patristic) distances
between tips on the phylogenetic tree given by off-
diagonal elements of 2(1 −W). To preserve the relative
distances for a tree with noncontemporaneous tips, let
W̃ be the matrix with elements w̃ij giving the shared
branch lengths between tips i and j (measured on any
scale, e.g., estimates of time, DNA divergence). If T is
the matrix whose elements tij = (w̃ii + w̃jj)/2 equal the av-
erage length from base to tips i and j, and ifmax(T −W̃)
is the maximum value of the elements in T − W̃, then

2(T−W̃)
max(T−W̃)

gives the tip-to-tip distances on the phyloge-

netic tree standardized so that the maximum distance
between tips is 2. Thus, in equation (1) we let W =

1− T−W̃
max(T−W̃)

to give a standardized way to incorporate

phylogenetic trees with noncontemporaneous tips.
As an explicit example, consider the case in which

species A and species B have base-to-tip length 2,
species C has base-to-tip length 8, and species B
and species C share branch length 1, thereby giving

W̃ =

[
2 0 0
0 2 1
0 1 8

]

. The species-to-species branch lengths

are then

[
0 4 10
4 0 8

10 8 0

]

, and hence the standardized

distance matrix 2(1 − W) =

[
0 0.8 2

0.8 0 1.6
2 1.6 0

]

. Here,

species A and species B are nearest and therefore have
the lowest corresponding element of 2(1 − W), even
though in the initial tree W̃, species B and species C are
the phylogenetically related species.

Parameter Estimation

Although it is possible to derive the likelihood func-
tion for the evolutionary process we described above
(e.g., Pagel 1994) and hence to estimate parameters
μ and α using ML estimation, instead we use a pro-
cedure that is more flexible and numerically more
efficient. Specifically, we estimate μ given α using the
quasi-likelihood function and then estimate α given μ
using least-squares estimation, repeatedly alternating
between estimating μ and α until both values converge.
Both quasi-likelihood and least-squares estimation re-
quire knowing only the first 2 statistical moments of
the probability distribution of trait values among tip
species; however, for a binomial process the first 2 mo-
ments fully specify the distribution, and therefore the
estimation procedure uses all information provided by
the data.
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The quasi-likelihood function is derived from the
expectation and variance of the distribution of Y.
Although for any distribution the quasi-likelihood func-
tion only approximates the likelihood function, quasi-
likelihood estimates are the same as ML estimates, and
the asymptotic properties of the estimators which are
used to derive, for example, approximate confidence
intervals are the same (McCullagh and Nelder 1989). In
the evolutionary process described above, the expecta-
tion of all elements of Y is simply μ, and the correlation
structure of the distribution of Y is given by C(α) (equa-
tion (1)), which together define the quasi-likelihood
function for a given value of α. Quasi-likelihood estima-
tion underlies GEE (Liang and Zeger 1986; Zeger and
Liang 1986; Zeger et al. 1988). The GEEs proposed for
phylogenetic analyses of comparative data (Paradis and
Claude 2002; Forsyth et al. 2004) have been first-order
approximations (GEE1), whereas it is also possible to
use second-order approximations (GEE2) that incorpo-
rate both the mean components of the models (regres-
sion coefficients) and the variance components (those
that affect the covariance matrix, such as the param-
eter α) (Prentice 1988; Zhao and Prentice 1990; Liang
et al. 1992). However, for our application the second-
order GEE2 is prohibitively complex and the first-order
GEE1 often had poor convergence properties (results
not presented). We therefore used quasi-likelihood
functions directly, employing simplex minimization
to find the ML parameter values rather than Newton–
Raphson minimization that is typically used in the GEE
approach.

Let μ̂(α) denote the estimate of μ conditional on α.
In the parlance of GLMs (McCullagh and Nelder 1989),
the quasi-likelihood function uses the link function g,
defined such that

g(E(Y)) = g(μ) = xb0, (2)

where x is the n × 1 vector of 1s, μ is the n × 1 vector of
values μ, and g is the logit function,

g(μ) = log
μ

1− μ
. (3)

Thus, the asymptotic mean of Yi is μ = exp(b0)
1+exp(b0)

. The
expectation μ is an increasing function of the logis-
tic regression coefficient b0, although unlike μ that is
bounded between 0 and 1, b0 is unbounded. For the
general multivariate case where x is a n × (p + 1) col-
umn vector containing ones in the first column and
p independent variables in the remaining columns,
the quasi-log-likelihood score or estimating equation
is (McCullagh and Nelder 1989, p. 333)

U(b̂(α)|α) =
∑

p+1

{(Ax)′V(α)−1(y − μ)}= 0. (4)

Although here we only address the univariate
case (p = 0), we provide equation (4) in its general
multivariate form for use later when we discuss the

multivariate case. In this equation, b̂(α) is the vector of
quasi-likelihood estimates of the regression parameters
(in this case b0) given α, A is the matrix containing along
the diagonal μ•(1−μ), where • denotes the element-by-
element (or Schur or Hadamard) product of 2 vectors,
and V(α) is the covariance matrix of Y,

V(α) =A1/2C(α)A1/2. (5)

The ML estimates of logistic regression coefficients
are known to be biased away from zero. To reduce bias,
we follow the procedure suggested by Firth (1993) and
employed by Heinze and Schemper (2002) for standard
logistic regression. Firth (1993) suggested penalizing
the log-likelihood function for logistic regression, LL(b),
by 1/2 log |I(b)|, where |I(b)| is the determinant of the
information matrix given by the second derivative of
LL(b) with respect to the vector b. This leads to the pe-
nalized score equation for coefficient bi of (Heinze and
Schemper 2002)

U∗i (b̂(α)|α)

=Ui(b̂(α)|α) + 1/2trace{I(bi)
−1[∂I(bi)/∂bi]}= 0. (6)

The information matrix I(b) equals (Ax)’V(α)−1(Ax)=
x’A1/2C(α)−1A1/2x. For the univariate case without any
independent variables, the derivative of I(b) with re-
spect to the coefficients b0 can be obtained algebraically.
However, for the case with independent variables
described below, there is no simple algebraic form for
the derivative of I(b), and therefore we computed the
derivative numerically.

The least-squares estimate of α is obtained by mini-
mizing the least-squares function

SS(α̂(μ)|μ) =−
1
2
(log |V(α)| + (y − μ)′V(α)−1(y − μ)).

(7)

This expression can be explained by noting that
(y − μ)′V(α)−1(y − μ) = [A−1/2(y − μ)]′C(α)−1

[A−1/2(y − μ)], whereA−1/2(y − μ) gives the standard-
ized or Pearson residuals that (for fixed μ) have variance
equal to 1 (McCullagh and Nelder 1989, p. 37).

Statistical Inference

Confidence intervals of the estimate of b0, and hence
μ, can be obtained using either asymptotic results from
the quasi-likelihood function or parametric bootstrap-
ping. (Here, for clarity of presentation we refer to
simulations used to obtain confidence intervals for pa-
rameter estimates as parametric bootstrapping. We also
performed simulations to investigate the statistical
properties of the estimators, which we refer to sim-
ply as simulations. Both of these procedures, however,
involve simulating data from the statistical model.)
Simulations (below) show that the likelihood-based
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approximate confidence intervals for b0 are often ac-
curate even for small sample sizes. It is also possible
to obtain approximate confidence intervals for α
using likelihood-based methods, although these in
general performed poorly, and therefore for αwe recom-
mend obtaining confidence intervals from parametric
bootstrapping.

To derive the asymptotic approximations for confi-
dence intervals, let b be the 1 × (p + 1) vector of regres-
sion coefficients. (Here, for generality, we have assumed
that there can be p independent variables, although for
the present univariate case b = b0.) The variance of the
estimator of b can be approximated from GEE under the
assumption that α is fixed at its least-squares estimate.
Let ∂μ

∂bj
denote the n × 1 vector of derivatives of μ with

respect to any column j of b,

∂μ

∂bj
=
∂g−1(bj)

∂bj
= μ • (1− μ). (8)

Then the GEE estimate of the variance in the estimator
of b is (Liang and Zeger 1986)

σ̂2(b̂|α̂) =
∂μ′

∂b
V−1(α̂)

∂μ

∂b
. (9)

Parametric bootstrapping is performed by simulating
data from the process leading to equation (1) using the
values of b and α estimated from the data. Rather than
perform the estimation of α directly, instead we esti-
mated a=− logα; the estimator of − logαwas generally
less skewed than that for α (or other transforms such as
1/α), and reversing the sign makes a increase with in-
creasing magnitude of phylogenetic correlations among
species. Because a = − logα is unbounded below, we
require a threshold for a below which we conclude that
phylogenetic correlations are sufficiently small to be
negligible. We set this threshold as a < −4 because for
values of a below −4, the correlation matrix C(α) is
essentially equal to the identity matrix (provided our
standardization procedure is used for trees with non-
contemporaneous tips); for example, a correlation in the
matrix W of 0.95 (equation (1)) becomes less than 0.01
in the corresponding matrix C(−4). Furthermore, at
a=−4 the regression coefficient estimates are very close
to those obtained using conventional logistic regression
with the Firth correction. As described previously, a
value of α=1 corresponds roughly to the strength of cor-
relations in trait values between species that are of simi-
lar magnitude to those obtained for a continuous-valued
trait under Brownian motion evolution with covariance
matrix W used in our analyses. Thus, we use the case of
a = 0 = − log 1 as a reference point and consider values
of a both less than and greater than 0.

Example

To illustrate these methods, we use data provided
by Brashares et al. (2000) on 75 species of African

antelope. We test the hypothesis that antipredator be-
havior, specifically whether they hide from predators
(Y = 0) or flee/fight (Y = 1), shows phylogenetic signal.
The test reveals highly significant phylogenetic signal
(Table 1); the bootstrap 95% confidence interval for a is
(−1.91, 1.32), and of the 2000 bootstrap (simulated) data
sets, none had values of a < −4 that would indicate
no phylogenetic signal. Note that even though none of
the 2000 simulated values of a equaled −4, we do not
report this as significant at the P < 0.0005 (=1/2000)
level because even if there were a 1 in 2000 chance of
a value of a = −4, this event might not be realized. In-
stead, we report P < 0.005, in which case the probability
of obtaining no value of a = −4 would be very small
(<10−4). Thus, we use an arbitrary but conservative
rule of thumb; if one bootstraps m data sets and none
satisfies a null hypothesis, then we report a P value for
rejecting the null hypothesis as 10/m.

Properties of the Estimator

To investigate the properties of the estimators in more
detail, we simulated data using the phylogenetic tree
of the 75 antelope species. We selected values of a (i.e.,
− logα) to give both weaker (a = −1) and stronger
(a = 1) phylogenetic signal and selected values of b0 to
give on average an equal number of 0 and 1 responses
(μ= 0.5 when b0 = log 1, equation (3)) and on average 4
times as many 0 responses as 1 responses (μ= 0.2 when
b0 = log 0.25). When there are many more zeros than
ones (or vice versa), estimates of phylogenetic signal
a should be less precise because the data contain less
information (see below). Because in the univariate case
we are mainly interested in determining the strength of
phylogenetic signal, we present only estimates of a and
not those for the other model parameter, b0; the coeffi-
cient b0 (the logit of the expected value of Y, equation
(3)) only sets the mean μ.

Figure 1 gives the distributions of estimates of a
for 2000 simulated data sets under the different com-
binations of a and μ. When phylogenetic signal is
weaker (a = −1), the estimator of a is unbiased. When
on average the numbers of 0 and 1 responses of the
dependent variable are equal (μ = 0.5, Fig. 1a), phylo-
genetic signal (i.e., estimates of a > −4) is detected in
all but 1 of 2000 simulated data sets (i.e., the apparent
power to detect signal is 1999/2000 = 0.9995). In con-
trast, when on average the numbers of 0 responses are 4
times greater than the numbers of 1 responses (μ = 0.2,
Fig. 1b), the estimator of a is less precise (higher vari-
ance) and no phylogenetic signal is detected in 2.5%
of the simulated data sets (power = 0.975). When phy-
logenetic signal is stronger (a = 1, Fig 1c,d), 27% (for
μ= 0.5) and 55% (for μ= 0.2) of the simulated data sets
had either all zeros or all ones, making it impossible to
estimate the phylogenetic signal. Estimates of a from the
remaining simulated data sets are slightly downward
biased and less precise (having higher variance) than
the case of weaker phylogenetic signal (a = −1). This
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TABLE 1. Phylogenetic analysis of the univariate case demonstrating strong phylogenetic signal in the antipredator behavior (0 = hide,
1 = flee or fight) of 75 antelope species (data and phylogeny from Brashares et al. 2000)

Parameter Value SE Approximate confidence interval Bootstrap meana Bootstrap confidence intervala Bootstrap P valuea

Phylogenetic logistic regression
ab −0.118 −0.290 (−1.91, 1.32) <0.005
b0 −0.078 0.898 (−1.88, 1.70) −0.114 (−1.96, 1.64)

aTwo thousand data sets were simulated to obtain bootstrap means and confidence intervals. Parametric bootstrapping was also used to test
the null hypothesis that there is no phylogenetic signal (i.e., a=−4, the lowest value we allow for a).
bEstimates of the parameter for phylogenetic signal a (=− logα) and b0 (the logit of the expectation μ; equation (3)) determining the mean
were obtained from equations (1)–(7), with standard errors (SE) and approximate confidence intervals for b0 obtained using GEE formulae
(equation (9)).

leads to a greater number of simulations for which no
phylogenetic signal is detected (type II errors), with es-
timates of a=−4 in more than 2% of the simulated data
sets for which a could be estimated.

These simulations reveal a seeming paradox: when
the value of a is larger, leading to stronger phylogenetic
correlations, it may be more difficult to statistically dis-
tinguish the value of a from −4; specifically, for the case
with μ = 0.5, phylogenetic signal (a > −4) was almost
always detected when it was weaker (a = −1, Fig. 1a)
but was not detected in 2% of the data sets (for which
an estimate could be obtained) when it was stronger
(Fig. 1c). A heuristic explanation for this apparently
paradoxical performance of the estimator of a is that

when there is strong phylogenetic signal, many simu-
lated data sets have almost all 0 or almost all 1 values.
Figure 2 graphs estimates of a versus the observed
number of 1 values for the same simulations used to
produce Figure 1. The estimates of a become more
variable and lower for the data sets with nearly all
0 or all 1 values. All data sets in which no phyloge-
netic signal was detected contain 2 or fewer 0 out-
comes out of 75 possible and therefore contain little
information. Thus, this type of problem should be
anticipated in real data sets that are sparsely popu-
lated by either zeros or ones. This issue should also be
considered in parametric bootstrapping, where large
numbers of data sets are simulated that may have

FIGURE 1. For the univariate case, simulations showing that phylogenetic logistic regression with the Firth correction (equations (1)–(9))
gives unbiased estimates of phylogenetic signal (a = − logα), although the precision (variability) of the estimates depends on both the true
strength of phylogenetic signal (a) and the mean value of the dependent variable. Two thousand data sets were simulated using the n = 75
species phylogenetic tree given by Brashares et al. (2000) with true values of a giving weak phylogenetic signal (a=−1) in (a) and (b) and strong
phylogenetic signal (a = 1) in (c) and (d). The value of b0 was selected so that the mean value of the trait in (a) and (c) is μ = 0.5 (b0 = loge 1)
and in (b) and (d) μ= 0.2 (b0 = loge 0.25). The values of a used to simulate the data are marked by vertical dashed lines, and the arrows give the
mean of the estimates from the 2000 simulated data sets.
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FIGURE 2. Effect of the observed number of zeros and ones in the data set on the estimated value of phylogenetic signal a in 2000 simulated
data sets for n = 75 species. The simulations are the same as used to create the corresponding panels in Figure 1. In each panel, the horizontal
dashed line indicates the location of the true value of a. When the dependent variable Yi has a large number of either zeros or ones, the estimates
of a tend to be lower and more variable. This occurs because data sets with large numbers of zeros or ones contain less information than those
with more equal numbers of zeros and ones. The downward bias in the estimate of a observed in Figure 1c,d when a= 1 is caused by the large
number of data sets with nearly all zeros or nearly all ones.

almost all zeros or ones. If bootstrapped estimates of
a show clear bias, then the simulated bootstrap data sets
should be investigated to understand the source of the
bias.

These effects for data sets that are sparsely popu-
lated with zeros or ones can be understood at a more
general and heuristic level. If a trait is invariant for a
given set of species, then the question of phylogenetic
signal becomes moot because we have no standard
of comparison. That is, we do not know if the next
species outside the clade containing the study species
has the same or different value for the trait. If the sister
clade for our study species were to be monomorphic
for the opposite state, then taken as a whole (study
clade plus its sister clade) the set of species would ex-
hibit very strong phylogenetic signal. If the sister clade
were monomorphic for the same state as for our study
species, then it would beg the question of whether the
trait might show phylogenetic signal in some broader
phylogenetic sampling of species. Thus, the ability
to estimate phylogenetic signal in a binary trait is
much more complicated and less intuitive than for a
continuous-valued trait (e.g., the K statistic of Blomberg
et al. 2003), although even interpreting the meaning
of phylogenetic signal in continuous-valued traits for
evolutionary processes can be complicated (Revell et al.
2008).

MULTIVARIATE CASE: REGRESSION COEFFICIENTS
AND PHYLOGENETIC SIGNAL

The multivariate case refers to phylogenetic logistic
regression when there are one or more independent
variables. In this case, the probability that Yi for species
i takes a value of 0 or 1 depends in part on independent
variables Xj ( j = 1, . . . , p). As for the univariate case, we
desire a model of an evolutionary process that generates
a probability distribution for Y. Although we do not ex-
pect all real data sets to be generated by the process we
derive, it nonetheless gives a plausible model that can
be used for statistical analyses.

Our model divides the process leading to the distri-
bution of trait values among species into 2 components.
One component is identical to the univariate case, in
which values of Y evolve up the phylogenetic tree with
asymptotic probability of being in State 1 equal to μ and
transition rate α. At the end of this process, the value
of Y for a given species is 0 or 1. In the second compo-
nent, the values of Y are affected by the species-specific
values of the independent variables Xj. For each species
i, we assume the value of Yi evolves toward either 0 or
1 depending on the values of Xj

i, with the rate of evo-
lution no longer depending on the transition rate α but
instead depending on the regression coefficients bj for
independent variables Xj. Thus, in the first component
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of this process the expected correlation in trait values
between species is determined by the parameter α, as in
the univariate model. The expectation of the mean trait
values (μi) in response to independent variables is set in
the second component of the process.

An important point in understanding the construc-
tion of this model is that the value of α affects only the
correlation structure of the residual variation, that is,
the variation not explained by the independent vari-
ables. Even in the absence of phylogenetic correlation
in the residual variation, there may be phylogenetic
correlation in the dependent variable itself if the in-
dependent variables have phylogenetic structure and
the independent variables do indeed affect (statistically
speaking) the dependent variable. Nonetheless, it is
phylogenetic correlation in the residual variation that
is important in formulating the statistical model. As
with standard regression and phylogenetic regression
with continuously distributed dependent variables, the
distributions of the independent variables do not enter
into the statistical model. For example, in phylogenetic
regression for continuous-valued traits (e.g., Lavin et al.
2008), the expectations for species trait values are set
by the independent variables, yet residuals are corre-
lated due to phylogenetic relationships. We derived
our 2-component model of evolution with independent
variables to give a statistical model that is compara-
ble to phylogenetic regression for continuous-valued
traits.

To implement this model, let

μ=
exp(xb)

1 + exp(xb)
(10)

be the n× 1 vector of expected values μi for each species
i, where x is the n × (p + 1) matrix whose first column
contains ones and remaining p columns contain values
of Xj (j= 1, . . ., p) and b is the 1× (p + 1) vector contain-
ing regression coefficients b0, . . ., bp. We assume that the
first component of the model occurs with an asymptotic
probability of being in State 1 equal to μ̄, the mean value
of μ; this gives the largest possible value for the maxi-
mum phylogenetic correlations that can be produced by
the model. For the second component, we assume that if
μi < μ̄, then trait Y will evolve toward 0; if it equals 0 at
the end of the first component, it will remain 0, whereas
if it equals 1 at the end of the first component, it will
switch to 0 with probability 1−μi/μ̄. In this construction,
the smaller the value of μi, the more rapidly the trait for
species i evolves toward 0. Conversely, if μi > μ̄, then
trait Y will evolve toward 1; if it equals 1 at the end of the
first component, it will remain 1, whereas if it equals 0
at the end of the first component, it will switch to 1 with
probability 1 − (1 − μi)/(1 − μ̄). It is possible to show
that the resulting correlation matrix C̃(α) is related to
the correlation matrix for the univariate case (equation
(1)) by

C̃(α) =MC(α)M− diag(MC(α)M) + I , (11)

where M is the diagonal matrix with elements
mii = (1 − μ̄)[μi/(1 − μi)]

1/2 for μi < μ̄ and mii = μ̄[(1 −
μi)/μi]

1/2 for μi > μ̄ and the diag() function sets the
nondiagonal elements of a matrix to 0.

An important property of this model for multivariate
regression is that when phylogenetic correlations are all
assumed to be zero (i.e., C̃(α) is the identity matrix),
it reduces to standard logistic regression. Furthermore,
we do not make assumptions about the distribution of
the independent variables; they may show phyloge-
netic signal or they may not. It is possible to formulate
a model in which the independent variables evolve
along a phylogenetic tree and the dependent variable
evolves in response (for an example for continuous-
valued traits, see Hansen and Orzack 2005) that con-
trasts our model in which response to independent
variables occurs following the establishment of phy-
logenetic correlations; however, this would introduce
considerable statistical difficulties. It would also neces-
sitate assumptions about the evolution and resulting
distribution of the independent variables, whereas our
method treats the independent variables as having fixed
values (i.e., we do not specify a statistical distribution of
the independent variables but instead treat their values
as known). Although we recognize that, as with any
statistical model, the process we used to construct our
model is unlikely to hold exactly for all real data sets, it
nonetheless incorporates phylogenetic correlations into
logistic regression in a simple and reasonable way and
will likely approximate other models of evolution well.

To avoid confusion that can arise regarding trans-
forming independent variables, we need to take a short
digression and consider the case of a continuous de-
pendent variable analyzed using either PIC or PGLS.
In PIC, independent contrasts must be computed for
both dependent and independent variables, and this
makes PIC conform to PGLS (Garland and Ives 2000;
Rohlf 2001); thus, even though independent contrasts
are computed for the independent variables, the phylo-
genetic signal is nonetheless confined to the residuals of
the regression model. In other words, computing inde-
pendent contrasts for the independent variables is not
equivalent to making the assumption that the indepen-
dent variables themselves show phylogenetic signal.
Instead, computing independent contrasts for the inde-
pendent variables X is better viewed as a transform of
variables; because the values of Y are transformed using
independent contrasts, so too must the values of X be
transformed to match Y. (The same logic applies when
computing correlations with PIC.) Our phylogenetic
logistic regression is comparable to PGLS, not PIC, in
that no transformation of the independent variables is
needed.

Parameter Estimation and Statistical Inference

All estimation and inference approaches used for the
univariate case can be applied directly to the multi-
variate case by substituting C̃(α) for C(α) in equations
(2)–(9).
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Example

We return to the data set of Brashares et al. (2000)
to illustrate the multivariate analyses. We test the hy-
pothesis proposed by Jarman (1974) that species living
in larger groups are more likely to flee/fight preda-
tors, whereas solitary or pair-living species are more
likely to hide. Group size ranges between 1 and 70,
and we treat log-transformed group size as a continu-
ous variable. Because body size is likely also to affect
antipredator behavior, with larger bodied species more
likely to flee/fight than hide, we follow Brashares et al.
(2000) and also include log body mass as a second in-
dependent, continuous-valued variable. Both indepen-
dent variables were standardized to have mean equal
to 0 and standard deviation equal to 1; this makes the
regression coefficients represent effect sizes of the inde-
pendent variables whose magnitudes reflect the size of
effect of the variable (as is done, e.g., by convention in
path analysis).

In the full phylogenetic analysis with both log group
size and log body mass, the effect of group size, b2, is sta-
tistically different from zero, as determined from both
the asymptotic approximation and the parametric boot-
strapping (Table 2). The bootstrap analysis indicates that
there is an upward bias in the estimate of b2; the boot-
strap simulations were performed with an input value
of b2 = 1.36 (the value estimated from the data), yet the
mean of the bootstrap estimates is 1.57, a bias of 1.57 −
1.36 = 0.21(15%). The lower bound of the bootstrapped
confidence interval for b2, (0.47, 3.20), is higher than that
obtained from the GEE approximation, (0.39, 2.33); this
can be explained in part by the bias because the differ-
ence in lower bounds, 0.47 − 0.39 = 0.08, is in the same
direction as the bias in the mean of 0.21. Although the es-

timates of b2 are biased, they are far less biased than the
case without the Firth correction (equation (6)), in which
the value used to simulate bootstrapped data sets is b2 =
1.44 and the bootstrapped mean estimate of b2 is 2.07, a
bias of 44%.

When standard logistic regression is applied to the
data, the estimates of b2 are much higher, 2.27 with the
Firth correction and 2.46 without (Table 2). The Firth cor-
rection leads to an unbiased estimate of b2, as demon-
strated by the mean of the bootstrapped estimates of
b2 equal to 2.29. Without the Firth correction, the esti-
mates are strongly upward biased, with the bootstrap
mean of 2.73. In both forms of standard regression, the
lower bound of the confidence limit is much higher than
those obtained in the phylogenetic analyses (Table 2).
Even though the standard logistic regression estimate of
b2 with the Firth correction is unbiased, this does not
mean that it is correct. In fact, the strong phylogenetic
signal estimated by the phylogenetic logistic regression
(a = 0.50) shows that the assumption of independence
among species made by standard logistic regression is
not satisfied.

In the phylogenetic logistic regression with and with-
out the Firth correction, there is strong phylogenetic
signal with the estimates of a equaling 0.50 and 0.46,
respectively. However, in neither case is the phyloge-
netic signal statistically significant. The apparently low
power for detecting phylogenetic signal occurs because
the effects of group size are large and therefore some
species (those with large group sizes) are expected to
have a high probability of fleeing/fighting, whereas
others are expected to have a high probability of hiding.
This strong effect of an independent variable limits the
residual strength of correlation that is possible in the

TABLE 2. Phylogenetic and standard logistic regression parameter estimates for the effects of log10 group size and log10 body mass on the
antipredator behavior (0 = hide, 1 = flee or fight) of 75 antelope species

Parametera Estimate SEb t score P value Approximate confidence Bootstrap meanc Bootstrap confidence Bootstrap P valuec

interval intervalc

Phylogenetic logistic regression with Firth correction
a 0.50 0.15 (−4, +4) 0.09
b0 −0.82 0.87 −0.96 0.34 (−2.54, 0.90) −0.69 (−2.78, 1.36) 0.51
b1 (body mass) 0.096 0.45 0.21 0.84 (−0.80, 0.99) 0.15 (−0.96, 1.32) 0.39
b2 (group size) 1.36 0.49 2.78 0.007 (0.39, 2.33) 1.57 (0.47, 3.20) <0.01

Phylogenetic logistic regression without Firth correction
a 0.46 −0.72 (−4, +4) 0.15
b0 −1.06 0.90 −1.18 0.24 (−2.85, 0.72) −1.30 (−5.00, 1.44) 0.42
b1 (body mass) 0.11 0.47 0.23 0.82 (−0.82, 1.04) 0.28 (−1.14, 1.95) 0.76
b2 (group size) 1.44 0.51 2.82 0.006 (0.42, 2.46) 2.07 (0.61, 5.26) <0.01

Standard logistic regression with Firth correction
b0 −0.24 0.30 −0.79 0.43 (−0.83, 0.36) −0.25 (−0.91, 0.32) 0.41
b1 (body mass) −0.65 0.44 −1.53 0.23 (−1.53, 0.23) −0.66 (−1.77, 0.29) 0.17
b2 (group size) 2.27 0.57 3.99 0.0002 (1.14, 3.41) 2.29 (1.23, 3.91) <0.01

Standard logistic regression
b0 −0.26 0.31 −0.84 0.40 (−0.88, 0.36) −0.29 (−0.99, 0.37) 0.38
b1 (body mass) −0.72 0.50 −1.43 0.15 (−1.72, 0.28) −0.77 (−2.04, 0.20) 0.12
b2 (group size) 2.46 0.67 3.69 0.0002 (1.13, 3.79) 2.73 (1.52, 4.70) <0.01

aAll independent variables were standardized to have mean 0 and variance 1 prior to analysis.
bStandard errors (SE) of the estimates and confidence intervals were obtained using the GEE approximation (equation (9)).
cParametric bootstrapping was performed by simulating 2000 data sets to obtain means and confidence intervals. Parametric bootstrapping
was also used to test the null hypotheses that there is no phylogenetic signal in the residuals (H0: a = −4, 1-tailed test) and that the regression
coefficients equal 0 (H0: bi = 0, 2-tailed tests).
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FIGURE 3. The performance of the estimators of phylogenetic signal a and the regression coefficient b1 in 2000 simulated data sets where the
true value of b1 is 1 and phylogenetic signal is either weak (a=−1) (a and c) or strong (a= 1) (b and d). The data sets were simulated assuming
there is one independent variable X that undergoes Brownian motion evolution up the phylogenetic tree of the 75 antelope species analyzed by
Brashares et al. (2000). The true values of a (a and b) and b1 (c and d) are shown in each panel by the vertical dashed line, and the mean of the
estimates from the simulated data are shown by the arrows. a) and b) show that the estimates of a are unbiased, but when phylogenetic signal
is strong (a = 1, b), the estimator is less precise (has higher variance). In (b) many estimates of a are −4 and 4, the minimum and maximum
allowed values of a in the statistical estimation that indicate either no or very high phylogenetic signal in the residual variation. c) and d) show
that, whereas the estimator of b1 is unbiased for weaker phylogenetic signal (c), stronger phylogenetic signal causes the estimator of b1 to be
upward biased; the mean of the 2000 estimates of b1 is 1.22, even though the value of b1 = 1 to simulate the data.

dependent variable; this is discussed in more detail be-
low. The nonsignificant effect of phylogenetic signal a
might incorrectly be used as an argument to perform
only conventional logistic regression. The differences
between conventional and phylogenetic analyses in the
estimates of the regression coefficients in Table 2 give
evidence against this.

Properties of the Estimators

To investigate the properties of the estimators, we first
perform simulations to analyze bias in the estimates and
then assess the accuracy of the confidence intervals and
the ability of the analyses to identify regression coeffi-
cients that are statistically significantly different from
zero. For the phylogenetic relationships among species,
we use the tree for antelope given by Brashares et al.
(2000). We assume a single continuous independent
variable X evolved by Brownian motion evolution, with
its covariance matrix W given by the same phylogenetic
tree we use in the model for evolution of the binary
dependent variable. Note, however, that the phyloge-

netic logistic regression model makes no assumption
about the distribution of independent variables, and we
could equally have assumed that X contained no phy-
logenetic signal. As in the analyses of the real data, we
standardize X to have mean 0 and standard deviation 1,
so that the coefficient b1 is a measure of effect size.

To illustrate properties of the estimators of a and
b1, we simulated 2000 data sets with relatively weak
phylogenetic signal (a = −1) and relatively strong sig-
nal (a = 1), in both cases using a true value of b1 = 1
(Fig. 3). In both cases, more than 5% of the data sets
had estimates of a less than −4 which corresponds to no
detectable phylogenetic signal. More data sets showed
no phylogenetic signal when phylogenetic signal was in
fact stronger (a = 1), as was found in the analyses of the
univariate case. This indicates that when phylogenetic
signal is strong, there is often less information in a given
data set, and therefore the analyses have little power to
detect phylogenetic signal in the residual variation.

Estimates of b1 were biased upward (Fig. 3c,d), the
severity of bias being greater for stronger phylogenetic
signal (estimate of b1= 1.22 when a= 1) than for weaker
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phylogenetic signal (1.06 when a = −1). To investigate
bias in more detail, we simulated data with a value of
b1 = 1 but varied the value of a from −4 (no signal)
to 2 (strong signal). Rather than assume there are 75
species, we reduced the number of species to 25; we
expected bias to be more severe with smaller sample
sizes, and therefore this provides a more stringent test
for the robustness of our methods. To create a 25-species
phylogeny, we selected every third species from the
Brashares et al. (2000) tree in order to preserve the gen-
eral structure of the phylogeny. Finally, we performed
these analyses using phylogenetic logistic regression
both with and without the Firth correction (equation
(6)) and standard logistic regression with and without
the Firth correction.

Not surprisingly, phylogenetic logistic regression
with the Firth correction outperformed the other 3
methods (Fig. 4). When phylogenetic signal is weak
(a < −1), both phylogenetic logistic regression and
standard logistic regression with the Firth correction
are approximately unbiased, yet as a exceeds zero,
standard logistic regression becomes increasingly bi-
ased upward, with the mean of the estimates reaching
1.89 when a = 2. In contrast, phylogenetic logistic re-
gression is only slightly biased, with the maximum of
the mean estimate remaining below 1.15. The other

2 methods, phylogenetic logistic regression without the
Firth correction and standard logistic regression, show
generally high bias, with standard logistic regression in
particular showing very large bias and high imprecision
(highly variable estimates) when there is phylogenetic
signal.

To assess the GEE approximate confidence intervals
for b (equation (9)), we simulated 2000 data sets with a
moderate phylogenetic signal (a=0) at each of 13 points
taken over a range of values of b1 and at each point
used the GEE approximation to determine whether we
could reject the null hypothesis that b1 = 0. This pro-
cedure generates a power curve for the estimates of b1.
We did these simulations for the case of both n = 75
species (Fig. 5a) and n = 25 species (Fig. 5b) and also
estimated parameters using standard logistic regres-
sion both with and without the Firth correction. For
the case with n = 75 species, phylogenetic logistic re-
gression performed well. When the value of b1 = 0 was
used to generate the simulated data, the null hypothesis
that b1 = 0 was rejected for 6% of the data sets at an
alpha = 0.05 level; thus, the method gave type I error
rates (rejecting the null hypothesis of b1 = 0 when it is
true) that were slightly inflated relative to the specified
alpha level in the logistic regression test. In contrast,
standard logistic regression both with and without the

FIGURE 4. Analyses of the bias of the estimator of b1 using 4 different types of logistic regression: a) phylogenetic logistic regression (equa-
tions (1)–(9)), b) phylogenetic logistic regression without the Firth correct (equation (6)), c) standard logistic regression with the Firth correction,
and d) standard logistic regression without the Firth correction. Overall, these analyses show that only the phylogenetic logistic regression with
the Firth correction (a) has good statistical properties. The data were estimated assuming that there are n= 25 species whose phylogenetic tree
was created by selecting every third species in the tree for 75 antelope given by Brashares et al. (2000). We assumed that there was a single inde-
pendent variable evolving under Brownian motion and that the true value of b1 is 1. Two thousand simulations were performed at each integer
value of a from −4 to 2, with −4 corresponding to no phylogenetic signal. The solid line gives the mean of the estimates from the simulated
data, and the dashed lines give the 95% inclusion intervals that contain 95% of the estimates.
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FIGURE 5. Performance of phylogenetic logistic regression with
the Firth correction (solid black line) and standard logistic regression
with (dashed line) and without (dotted line) the Firth correction, in
testing whether the regression coefficient b1 differs from zero. The ver-
tical axis gives the probability of rejecting the null hypothesis of H0:
b1 = 0 using the approximate GEE confidence intervals (phylogenetic
logistic regression, equation (9)) and confidence intervals obtained
from conventional logistic regression using estimates of the standard
errors. In (a) n = 75 species and in (b) n = 25 species. At each of 13
values of b1 (−1.5, −1.25, . . . , 1.5 in a), and −3, −2.5, . . . , 3 in b), 2000
simulations were performed with a moderately strong phylogenetic
signal (a = 0). For each simulation, the null hypothesis H0: b1 = 0 was
tested using an alpha level of 0.05. If the statistical test for the null hy-
pothesis were performing correctly, then when the true value of b1 is
0, the null hypothesis should be rejected in 5% of the simulated data
sets. The 5% threshold is shown by the thin line at 0.05 in both panels.
The results for standard logistic regression with or without the Firth
correction show much higher rates of rejecting H0: b1=0, and hence in-
appropriately high type I error rates. For each simulation, values of X
were generated under the assumption of Brownian motion evolution.
For (a) where n = 75 we used the phylogenetic tree from Brashares et
al. (2000), and for (b) where n = 25 we created the tree by selecting
every third species from the n= 75 tree.

Firth correction rejected the null hypothesis that b1 = 0
when it was in fact true for roughly 45% of the simu-
lations when the alpha level was 0.05. Thus, these non-

phylogenetic methods frequently and incorrectly identi-
fied data sets as having values of b1 that are statistically
significantly different from zero. For the case with n =
25 species, the rejection rate of 3% given by phyloge-
netic logistic regression when b1 = 0 was slightly low;
this indicates that the logistic regression test is slightly
less likely to reject the null hypothesis when it is true
than it should for its specified alpha value. The perfor-
mance of the standard logistic regressions was better
than when n= 75, with rejection rates of roughly 10% at
b1 = 0. This nonetheless represents a sizable risk (double
the nominal type I error rate) that the null hypothesis
(b1 = 0) will be rejected even when it is true.

At extreme low and high values of b1, the probability
of rejecting the null hypothesis that b1 = 0 approaches
one when n= 75, yet for phylogenetic logistic regression
this probability plateaus at 0.8 when n=25 (Fig. 5b). This
indicates that when there are both small samples sizes
and moderate phylogenetic signal (a = 0), there is a limit
to the statistical power to reject the null hypothesis that
b1 = 0.

Overall, these results suggest that using the GEE
approximation (equation (9)) to test the statistical sig-
nificance of logistic regression coefficients is adequate.
Nonetheless, we recommend obtaining parametric boot-
strap estimates whenever statistical results are marginal
(e.g., if the GEE approximation gives a P value of 0.04
and the researcher wants to use an alpha = 0.05 level).
Although there is a cost in terms of computing time
(our analyses of the antelope data giving Table 2 re-
quired several hours on a desktop computer in Matlab),
parametric bootstrapping will generally give more accu-
rate confidence intervals for the regression parameters,
will identify possible bias in the estimates, and will give
the distribution of the estimates of phylogenetic signal a
in the residual variation.

Finally, our results illustrate the dangers of using
standard logistic regression when there is phylogenetic
signal. Standard logistic regression, even with the Firth
correction, gave biased estimates of regression coeffi-
cients (Fig. 4) and incorrectly high rates of rejecting the
null hypothesis that the regression coefficients differed
from zero (Fig. 5).

DISCUSSION

Our phylogenetic logistic regression makes it possible
to analyze data with binomial dependent variables and
continuous or discrete independent variables when the
residual variation in the dependent variable is phylo-
genetically correlated among species. When applied to
univariate problems (i.e., when the model contains only
the intercept or grand mean, b0), the method gives a
measure of phylogenetic signal, that is, the strength of
phylogenetic correlation in trait values among species.
Thus, the method is related to methods for continuous-
valued traits that estimate the strength of phylogenetic
signal (Blomberg and Garland 2002; Freckleton et al.
2002; Blomberg et al. 2003; Housworth et al. 2004; Revell
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et al. 2008). It is also related to the randomization test of
Maddison and Slatkin (1991) for phylogenetic signal in a
single binary character, in which the minimum number
of transitions between states up a phylogenetic tree is
computed for the data, say Nobs, and compared with the
distribution of Nsim obtained from either randomizing
the actual data or generating new data via simulations.
In contrast to this type of test, however, our approach is
based on parameter estimation and therefore produces
a statistical model of the process that can be used, for
example, to simulate data. Also, our method makes
it possible to incorporate independent variables that
could include “nuisance” variables which a researcher
wants to factor out of an analysis of phylogenetic signal
(e.g., method of calculation for home range area; Perry
and Garland, 2002).

When applied with one or more independent vari-
ables, our model gives estimates of regression coeffi-
cients that account for phylogenetic correlations but
does so without making a priori assumptions about the
strength of phylogenetic signal in the residual varia-
tion; the strength of phylogenetic signal is estimated
simultaneously with the regression coefficients. Thus,
the method is similar to phylogenetic regression with
continuous-valued traits in which phylogenetic signal
is simultaneously estimated with the regression coeffi-
cients (e.g., Grafen 1989; Huey et al. 2006; Duncan et al.
2007; Lavin et al. 2008; Lajeunesse 2009).

The underlying evolutionary process that gives rise
to the phylogenetic structure of our statistical model is
identical to that used by Pagel (1994) to derive a corre-
lation test between 2 binary traits; it is a Markov model
that assumes a trait has fixed probabilities of changing
from State 0 to 1, and from 1 to 0, as it evolves up a phy-
logenetic tree. Nonetheless, our goal was a model for
logistic regression that could accommodate either con-
tinuously valued or discrete independent variables and
an arbitrary number of them. This is the main difference
between our method and not only Pagel (1994) but also
other methods for binary traits (Maddison 1990; Ridley
and Grafen 1996; Grafen and Ridley 1997; Pagel 1997;
Schluter et al. 1997; Cunningham et al. 1998; Lorch and
Eadie 1999; Schultz and Churchill 1999; Lindenfors et al.
2003; Pagel and Meade 2006).

Other conceptually distinct formulations of statistical
models for binomial dependent variables are possible.
For example, Felsenstein (2005) derives a “threshold”
model in which there is an underlying and unobserved
continuous-valued “liability” trait evolving up a phy-
logenetic tree; the observed binary trait is then deter-
mined by whether or not the liability has crossed a
threshold (e.g., the trait value for a species is 1 if its
liability trait x > 0). It is also possible to derive a model
in which the probability of species i being in State 1, say
pi, evolves up a phylogenetic tree. Specifically, the logit
of pi, log[pi/(1 − pi)], could be treated as a continuous,
normally distributed variable that evolves according
to a Brownian motion or an OU process. The result-
ing phylogenetic logit-normal compound process could
then be analyzed as a generalize linear mixed model

(McCulloch et al. 2008, p. 64). In contrast to the ap-
proach we take here, however, these other approaches
do not recover standard logistic regression as a spe-
cial case when phylogenetic signal is assumed to be
absent.

We have referred to the parameter α that gives the rate
of switching among trait values during evolution up the
phylogenetic tree as a measure of phylogenetic signal.
Mathematical justification for this is provided by the
fact that the resulting correlation matrix C(α) (equation
(1)) is identical to that produced for continuous-valued
traits under the assumption that evolution follows an
OU process and is at stationarity, as assumed by Hansen
(1997), Martins and Hansen (1997), and Butler and King
(2004) (but not by the formulation of Blomberg et al.
2003). Because the parameter governing the strength of
stabilizing selection in an OU process has been associ-
ated with phylogenetic signal (Blomberg and Garland
2002; Blomberg et al. 2003), it is appropriate to simi-
larly associate α with phylogenetic signal. Hansen and
Orzack (2005) make explicit this association between
α from a 2-state Markov process and phylogenetic sig-
nal (they use the term “phylogenetic inertia”) in an
OU process. Heuristically, as α approaches infinity (or
a=− logα approaches −∞), the transition rate between
states occurs so rapidly that phylogenetic information is
wiped out; thus, smaller values of α (or larger values of
a) correspond to the emergence of phylogenetic signal.
At the opposite extreme, however, the interpretation of
α in terms of phylogenetic signal becomes less clear.
As α approaches zero (a approaches +∞), all species
will have the trait value of their common ancestor. Al-
though this does give the case in which a phylogenetic
effect is strongest, it leaves no variation in which to
see the phylogenetic resemblances among species (see
Univariate Case: Properties of the Estimator). In other
words, even though in the limit as α approaches zero
there may be phylogenetic signal that generates corre-
lations in trait values among species, as the variances
among species go to zero, these correlations become
invisible to our statistical methods. Therefore, although
the phylogenetic signal is strong, in that species share
trait values with their ancestral species, the evidence
of this signal is absent, and hence phylogenetic signal
becomes undefined. The statistical ramifications of this
are seen in simulations demonstrating the increasing
difficulty of statistically detecting phylogenetic signal
as a becomes much greater than 1 (Figs. 1–3). Although
we think it is still reasonable to refer to α (or a) as a
measure of phylogenetic signal, just as the parameter
for stabilizing selection in an OU process, it is necessary
to understand what these parameters are (and are not)
in fact revealing.

Statistical Properties

The simulations we used to test the performance of
the methods demonstrate that they have generally good
statistical properties. The estimates of regression coef-
ficients bi tended to be slightly biased away from zero
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when there was strong phylogenetic signal in the resid-
ual variation. This bias can be detected during para-
metric bootstrapping, and hence we recommend that
bootstrapping be done routinely. When interest is only
in whether the regression coefficients are statistically
significant, however, the GEE methods to test whether
bi = 0 (Fig. 5) performed well and are numerically much
less intensive than parametric bootstrapping. An alter-
native approach that we did not investigate is using
odds ratio models (Liang et al. 1992; Carey et al. 1993).
In odds ratio models, the analyses are not based on
probabilities of having values of 0 or 1 but are instead
based on odds ratios, that is, the probability of having
value 1 divided by the probability of having value 0.
Because the odds ratio is not bounded between 0 and 1,
as is the probability of having a value of 1, estimates of
odds ratios might be less biased than estimates of prob-
abilities. Nonetheless, most analyses performed to test
evolutionary and ecological hypotheses are based on
regression, and we have focused on logistic regression
to provide a counterpart for phylogenetic regression
with continuous-valued traits.

Our simulations show that even though the statistical
methods perform well, the statistical power to identify
phylogenetic signal and effects of independent vari-
ables are often low with a binary dependent variable.
This indicates that binary data often do not contain a
large amount of information. In simulation studies for
continuous-valued traits, Blomberg et al. (2003) found
that sample sizes of 20 species were often required to
detect phylogenetic signal with a statistical power of
∼0.8 (and these simulations assumed no measurement
error in the tip data [e.g., Ives et al. 2007] and no error
in the phylogenetic topology and branch lengths used
for analyses). For the case of binary traits, more data
will often be needed. A particularly disconcerting result
from our simulations is that it may become harder to
statistically detect the existence of phylogenetic signal
as it becomes stronger (a increases). This is because, as
a becomes large, many species will likely have either
all 1 values or all 0 values; when this is the case, there
is little variation among species through which phy-
logenetic correlations can be detected. This problem is
compounded when there are independent variables that
strongly affect the value of the binary trait. For example,
suppose one selects 2 species from a phylogenetic tree
with different corresponding values of an independent
variable X so that the mean values of their traits are
μ1 = 0.2 and μ2 = 0.8. For 2 species with mean trait
values μi < μj, the maximum correlation between trait
values is

rmax =

(
μi(1− μj)

(1− μi)μj

)1/2

. (12)

From this, the maximum value of the correlation for 2
species with μ1 = 0.2 and μ2 = 0.8 would be 0.25. In
general, for any 2 species that have different means μi
and μj, the maximum correlation in the trait is less than
1. Therefore, any effects of independent variables drive
down the maximum possible phylogenetic signal in the

residual of the dependent variable between species. The
reduced phylogenetic signal is thus more difficult to
detect.

Despite the possible difficulties in detecting phylo-
genetic signal, particularly in the presence of strong ef-
fects from independent variables, our simulations show
that phylogenetic logistic regression should be used
whenever there is the possibility of phylogenetic signal.
Applying standard logistic regression when there is
phylogenetic signal leads to highly biased estimates of
regression coefficients (Figs. 3 and 4) and false tests that
the regression coefficients differ from zero (Fig. 5). Fur-
thermore, the problems with applying standard logistic
regression increase with increasing sample sizes. For
example, in our simulations with n = 75 species and
moderate phylogenetic signal (Fig. 5a), standard logis-
tic regression with an alpha level of 0.05 rejected the
null hypothesis that b1 = 0 in 45% of the data sets that
were simulated with a true value of b1 = 0. Therefore,
standard logistic regression runs the risk of unaccept-
able type I errors in which the null hypothesis is falsely
rejected. As has been emphasized numerous times, this
is also a major reason for using phylogenetic methods
when analyzing continuous-valued traits (e.g., Grafen
1989; Harvey and Pagel 1991; Martins and Garland 1991;
Garland et al. 1992; Diaz-Uriarte and Garland 1996;
Garland et al. 2005; Rohlf 2006).

Although the methods performed well, there are
some limits to the information they provide. In par-
ticular, we have not provided formulae for the approx-
imate quasi-likelihood function, and therefore we do
not provide a means for likelihood-based tests (such
as likelihood ratio tests) and likelihood-based model
selection criteria (such as Akaike information criterion).
We are hesitant to provide these formulae because ap-
plication of likelihood-based methods for our models
relies upon asymptotic properties of the estimators
as sample sizes become “large”. Without simulations
designed around a specific data set in hand, it is dif-
ficult to determine how large is “large”, or how poor
the approximations perform when the data set is not
“large” (e.g., Nelder and Pregibon 1987; Hurvich and
Tsai 1995). This uncertainty explains our preference for
parametric bootstrapping approaches in which sample
size effects are visible. Given the limited statistical infor-
mation available in binary dependent variables, large
numbers of independent variables should generally not
be included in a model, reducing the need for model
selection approaches. Until the small-sample-size prop-
erties of phylogenetic logistic regression are thoroughly
investigated through simulations, we recommend the
judicious use of parametric bootstrapped confidence
intervals. Careful attention should be paid to joint con-
fidence intervals when multiple independent variables
are included; these can be calculated from the distri-
butions of bootstrapped parameter values provided by
the computer code “PLogReg.m” (see Supplementary
Material).

To our knowledge, Paradis and Claude (2002) were
the first to propose phylogenetic logistic regression
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using GEEs, and Forsyth et al. (2004) were the first to im-
plement GEEs to incorporate phylogenetic correlations
in comparative analyses with non-Gaussian dependent
variables. A difficulty with this approach, however, is
that direct application of GEEs to phylogenetic data
requires the specification of a fixed, feasible correla-
tion matrix C—fixed in the sense of containing constant
correlation coefficients and feasible in the sense that
the data could potentially exhibit the fixed correlation
coefficients. However, for logistic regression with inde-
pendent variables, the correlation matrix must depend
on the estimated mean value of traits; in our model this
is the case, as given by equation (11). To illustrate this
problem, consider the situation of a 3-species polytomy
for species 1, 2, and 3, and assume that for the inde-
pendent variable X, species 1 and species 2 have mean
values of μ1 = μ2 = 0.2, whereas for species 3 μ3 = 0.8.
Then using equation (12), the maximum residual corre-
lation between species 3 and the other 2 species would
be 0.25, even though the residual correlation between
species 1 and 2 could possibly be 1. Thus, even though
the 3 species are equally phylogenetically related, dif-
ferences in the independent variable among species
constrain the correlation coefficients in residual varia-
tion. This constraint on the correlation structure is not
incorporated into the methods of Paradis and Claude
(2002) and Forsyth et al. (2004), although Martins and
Hansen (1997) point out this difficulty. Note that this
difficulty would also arise if phylogenetic regression for
continuous-valued traits were applied directly to binary
data (e.g., Grafen 1996).

To guarantee that our statistical model produces a
feasible correlation matrix, we used a model of an ex-
plicit evolutionary process. Not only does this overcome
the problem of ensuring a feasible correlation matrix, it
also results in a statistical model in which the strength of
phylogenetic signal in the residual variation is estimated
by the parameter a. The resulting phylogenetic correla-
tion matrix C(α) is never the same as the correlation
matrix that would be derived under Brownian motion
evolution of continuous-valued traits, W (equation (1)),
although when a= 0 the strength of phylogenetic corre-
lations (off-diagonal elements of C(λ) and W) is often of
similar magnitude. Our model does introduce greater
statistical complexity than the GEE approach of Paradis
and Claude (2002) and Forsyth et al. (2004) because a
must be estimated. Nonetheless, we provide Matlab
programs with a user-friendly interface for estimation
and inference using parametric bootstrapping.

We analyzed the data presented in Brashares et al.
(2000) on the antipredator behavior of 75 species of an-
telope. We reached the same conclusion that species
having larger group sizes were more likely to flee or
fight predators than hide. Their analyses, however, used
log group size as the dependent variable and antipreda-
tor behavior and log body mass as the independent
variables. Therefore, their statistical tests were based
on variability in group size among species rather than
variability in antipredator behavior. As a consequence,
phylogenetic relatedness was incorporated into residual

variation in group size, with phylogenetically related
species more likely to have similar group sizes. In our
analyses, the statistical tests are based on variability in
antipredator behavior, and the estimate of a(= − logα)
gives a measure of the probability that phylogenetically
related species show the same antipredator behavior.
Given the moderately strong phylogenetic signal we
observed in the binary antipredator trait after including
the effects of group size and body size (Table 2), we
suspect that the approach used by Brashares et al. (2000)
could be prone to inflated type I errors (falsely rejecting
the null hypothesis of no relationship) due to the loss
of information caused by phylogenetic signal in binary
data. We have not explored this in detail, however, as
the phylogenetic logistic regression approach is better
suited for this problem in which antipredator behavior
is viewed as the dependent variable (Jarman 1974).

Future Directions

The methods we propose can be used for data with
strict binary values, such as whether a species has sex-
ual reproduction or wings. They can also be used for
continuous-valued traits that have strongly bimodal dis-
tributions or distributions with sufficiently many zeros
that the assumptions of methods used for continuous-
valued traits (e.g., normally distributed residuals) are
badly violated. There is necessarily a loss of information
when converting a continuous-valued trait into binary
outcomes, and the resulting statistical tests will have
correspondingly reduced power. Nonetheless, although
there are other less drastic statistical approaches, such as
using linear or generalized mixed models (McCulloch
et al. 2008), these have not yet been thoroughly investi-
gated for phylogenetic data. Although we present only
the case of binary outcomes here, a similar approach
can be derived for other members of the exponential
family of distributions, such as the Poisson and nega-
tive binomial distributions. This will require, however,
specific models of evolution that generate a particular
distribution for the purposes of parameter estimation
and hypothesis testing.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://
www.sysbio.oxfordjournals.org/.
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PLogReg.m is a menu-driven front end for a collection of programs used for phylogenetic logistic 
regression, as described in detail by Ives and Garland (2010).  The documentation here gives an 
example of PLogReg.m input and output.  We are not providing the code as a download on this 
site, because we want to avoid the code becoming dead.  We are continuously updating our code 
to suit users’ needs and fix bugs as they appear.  If you want the most recent version of the code, 
then please contact Ted Garland at tgarland@ucr.edu.  
 
We have not tried the code with Octave, a freeware version of Matlab.  However, we would be 
very interested to have somebody try. 
 
The example we present here is to demonstrate the data requirements and output of PLogReg.m.  
The two required files (as plain ASCII text files with no formatting of any kind) are: 
 
1.  Tip data file.  This contains the tip (comparative) data to be analyzed, organized with species 
in rows, trait values in columns, and optional column headers and/or row labels.  The first column 
can be alphanumeric if it contains tip names (no spaces or funny characters allowed).  The first 
row can also be alphanumeric if it contains variable names (again, no spaces or funny characters) 
 
2.  Phylogenetic variance-covariance matrix C.  This is a square matrix.  Diagonals represent 
the branch-length distance from root of the tree to each tip (terminal taxon).  Off-diagonals 
represent the branch-length distance from the root to the last common ancestor of each pair of tips. 
 

One way to create this matrix is with the PDDIST.EXE program of our DOS PDAP 
package as follows: 
 
After you have a tree/data file loaded (typically in the PDI format), then 
  a.  Select option 5 to produce what is named a DSC matrix. 
  b.  Choose M for matrix output. 
  c.  Use of a header it optional (the Matlab code does not use it if it is there). 
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  d.  Do not scale all values. 
  e.  Do not write in a compact format without exponents unless all of your branch lengths 

are in whole numbers or at least have few decimal places. 
 
It is critical that the rows in the tip data file be in exactly the same order as the left-to-
right (and top-to-bottom) order of the phylogenetic matrix!  Otherwise, all results will 
be nonsense.  Note that PDTREE and PDDIST always save PDI and DSC files in this 
form, so it is convenient to use these two programs in concert to create your tip data and 
phylogenetic matrices. 

 
 
For the example presented below, the tip data and variance-covariance matrix files are named 
BrashData.txt and BrashV.txt, and they were analyzed for Table 2 in Ives and Garland (2010). 
 
Below, the user input is in red and PLogReg output is in green.  The example uses bootstrapping, 
which is numerically intensive; the example below took 20 hours on an oldish laptop.  The code is 
slow because it goes through extensive evasive action to detect convergence problems.  This 
makes the code robust at the expense of speed.  As you will see, convergence is not always 
obtained, and when it is not, a warning message is printed to the terminal.  Also, lack of 
convergence is flagged in the output file of all parameter estimates called paralistP.txt.  In 
extensive simulations, however, the distribution of estimates when convergence is not obtained is 
indistinguishable from the distribution when convergence is obtained.  In other words, the cases of 
non-convergence are still fine (although they can be excluded from the analyses using the flag in 
the paralistP.txt file).  There are technical reasons for the lack of convergence that we don’t want 
to go into here.  Nonetheless, even when the algorithm technically does not converge, the solution 
is very close to the true ML estimates. 
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PLogReg.m: Phylogenetic Logistic Regression 
(c) Anthony R. Ives and Ted Garland Jr. - 31 August, 2009 
Based on Ives & Garland (in review) 
 
All estimation (standard and phylogenetic) is performed using the Firth correction 
 
Do you wish to log the session (Turn diary on)? (Y/N) n 
The date is: 13-Sep-2009 
Time (24 hour clock): 13:02 
Data files should contain values corresponding to species (rows) 
    and variables (columns) in plain ASCII text. 
Missing data can be indicated in the file by "NaN" (in Matlab v. 7) or "-9999". 
Hit Return to choose the data file. 
You chose data file: /Users/arives/Text Folder/Logistic regression Folder/PLogReg 
31Aug09 pgms/BrashData.txt 
Input the number of columns in the file, including tip names if present: 9 
Does the data file have a header row? (Y/N) n 
Does the file include tip names in the first column? (Y/N) n 
Your tip data file contains 75 rows and 9 columns 
Hit return to choose the covariance matrix file. 
You chose matrix file: /Users/arives/Text Folder/Logistic regression Folder/PLogReg 
31Aug09 pgms/BrashV.txt 
Does the matrix have a header row? (Y/N) n 
Which column contains the dependent variable? 6 
 
How many independent variables do you want to analyze? 2 
Which column contains independent variable 1? 8 
Do you want to log-transform this variable? (Y/N) n 
Do you want to standardize this variable to have mean 0 and variance 1? (Y/N) y 
 
Which column contains independent variable 2? 9 
Do you want to log-transform this variable? (Y/N) n 
Do you want to standardize this variable to have mean 0 and variance 1? (Y/N) y 
 
Methods: 
       (O) Ordinary Logistic Regression (assumes a star phylogeny) 
       (F) Ordinary Logistic Regression with the Firth correction (assumes a star 
phylogeny) 
       (P) Phylogenetic Logistic Regression with the Firth correction 
Select a method: p 
Do you want obtain bootstrap confidence intervals by simulation? (Y/N) y 
Input the number of simulations you want to run (default = 2000): 2000 
Select an alpha value for confidence intervals (default = .05): .05 
 
OUTPUT FROM PLogReg.m 
 
Data file saved as 'workingDataFile.txt' 
Note: this file will overwrite previous files with the same name 
 
 
Output from Phylogenetic Logistic Regression 
 
Coefficients with +- standard error from GEE approximation 
b0 (intercept) = -0.82278 +- 0.86788 
b1 = 0.096001 +- 0.44871 
b2 = 1.36 +- 0.48516 
 
a = 0.49966 
 
Transformed covariance matrix C saved as C.txt 
Note: this file will overwrite previous files with the same name 
 
X, Y, and mu (prediction of Y) saved as Yestimates.txt 
Note: this file will overwrite previous files with the same name 
 
Bootstrapping is commensing.  This may take some time. 
Every 100 bootstrap simulations, progress is reported on screen and 
the accumulated list of parameter estimates is saved in paralistP.txt 
in the order: convergeflag (0 or 1), a, b0, b1, ... 
 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
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phylogenetic logistic regression bootstrap iteration = 100; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 200; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 300; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 400; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 500; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 600; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 700; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 800; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 900; partial parameter list saved 
as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1000; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1100; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
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phylogenetic logistic regression bootstrap iteration = 1200; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1300; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1400; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1500; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1600; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1700; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1800; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 1900; partial parameter list 
saved as paralistP.txt 
PLogReg.m failed to converge 
PLogReg.m failed to converge 
phylogenetic logistic regression bootstrap iteration = 2000; partial parameter list 
saved as paralistP.txt 
 
Output from Bootstrapping 
Bootstrapped bounds of (1-alpha) confidence intervals (lb,mean,ub) and p-value for 
H0:b=0 
b0 (intercept) = (-2.7818, -0.6908, 1.3572)  p = 0.514 
b1 = (-0.96363, 0.15097, 1.3234)  p = 0.749 
b2 = (0.46844, 1.5696, 3.2027)  p = 0.001 
 
Bootstrapped bounds of (1-alpha) confidence intervals and p-value for H0:a=-4 (1-tailed) 
Note: a=-4 corresponds to no phylogenetic signal (see Ives and Garland in review) 
 
a =  (-4, 0.15314, 4)  p = 0.093 
 
 
Covariance matrix of bootstrap parameter values in order: a, b0, b1,... 
Cov_Matrix_boot = 
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    6.3439   -0.1541    0.0864   -0.4054 
   -0.1541    1.2050   -0.0287   -0.0834 
    0.0864   -0.0287    0.3167   -0.1648 
   -0.4054   -0.0834   -0.1648    0.4940 
 
Do you want to perform additional analyses? (Y/N)  n 
 
End PLogReg.m 
 
 
 


