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Introduction

Changes in body size and limb or tail proportions are

claimed to be associated with the evolution of locomotor

performance in different ecological settings in several

clades of squamates (e.g. Losos & Sinervo, 1989; Losos

1990a,b; Bonine & Garland, 1999; Van Damme &

Vanhooydonck, 2002; Herrel et al., 2002; Goodman

et al., 2008). Comparative studies investigating eco-

morphological relationships suggest three main morpho-

logical characters that may explain differences in squamate

locomotor performance, in context-specific ecological

settings: body size (e.g. Losos, 1990a,b), relative limb

proportions (e.g. Losos & Sinervo, 1989; Losos, 1990a,b;

Bonine & Garland, 1999; Melville & Swain, 2000; Herrel

et al., 2002), and foot morphology (e.g. Carothers, 1986;

Glossip & Losos, 1997; Melville & Swain, 2000; Zani,

2000; Macrini et al., 2003; Elstrott & Irschick, 2004;

Irschick et al., 2005). Evolutionary changes in these traits

are associated with the concept of morphological special-

ization following the colonization of novel habitats, a

process that has been studied most extensively in anoline

species. Along the Greater Antilles islands, Anolis species

with similar ecologies exhibit comparable behaviour and

morphology (ecomorphs) independently of their evolu-

tionary relationships, a pattern suggesting convergent

evolution (Losos, 1990a; Losos, 1992; Losos et al., 1998;

Beutell & Losos, 1999). A similar trend has been observed

in Anolis from the Bahamas (Losos et al., 1994) and, to a

lesser degree, in continental Anolis from Costa Rica

(Pounds, 1988; Pinto et al., 2008). Interestingly, inter-

annual changes in ecological and environmental factors

seem to be directly related to morphological variation in

body size and limb length among different years in

anoline species (Calsbeek, 2009; Calsbeek et al., 2009),

which reinforces the evidence for a clear association

between ecology and morphology in the group.

Aside from Anolis, the ecological correlates of body size

and limb proportions are less apparent in studies of other
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Abstract

Variation in squamate foot morphology is likely relevant during evolutionary

processes of habitat colonization because distinct surfaces differ in energetic

and functional demands for locomotion. We combined new foot morpholog-

ical data with published information of limb and tail lengths to investigate

evolutionary changes possibly associated with the differential usage of

ecological settings by Tropidurinae species. Several traits exhibited significant

phylogenetic signal, and we performed conventional and phylogenetic

regressions of PC scores (retained from Principal Components Analyses of

morphometric traits) on continuous ecological indices. Tropidurines from

sandy habitats exhibit larger foot soles, opposite to the evolution of narrow

feet in species that use branches and rocks. Also, species that usually move

along trunks present longer femora. This study provides evidence for

morphological adaptations associated with substrate usage in Tropidurinae,

and suggests that opposite morphological profiles might evolve associated with

the use of surfaces energetically and functionally contrasting, possibly leading

to trade-offs.
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genera of squamates, including Sceloporus, Acanthodacty-

lus, Adolfus, Lacerta, Podarcis, Petrosaurus, Uta, Tropidurus,

and Liolaemus (Miles, 1994; Vanhooydonck & Van

Damme, 1999; Warheit et al., 1999; Kohlsdorf et al.,

2001; Schulte et al., 2004). In addition, the evolution of

foot morphology associated with habitat usage has

received comparatively less attention in squamates,

although foot morphology exhibits clear performance

correlates in some cases (e.g. Carothers, 1986; Autumn

et al., 2000; Zani, 2000; Elstrott & Irschick, 2004), and

some studies suggest that foot length (Melville & Swain,

2000) or specific traits of foot morphology, such as claws

and toepads (e.g. Glossip & Losos, 1997; Zani, 2000;

Macrini et al., 2003; Elstrott & Irschick, 2004), may have

evolved in association with habitat usage. Surprisingly,

foot morphology and relative foot size have usually been

studied separately, although these two traits would be

expected to evolve in association.

Locomotion in squamates may be affected by subtle

evolutionary changes in foot morphology that improve

performance on specific substrate types. For example,

locomotion on sand involves low friction and force

restitution coefficients (and therefore increased energetic

demands for movement; Lejeune et al., 1998), as sand is a

noncompact substrate that is displaced when a force is

exerted on the surface. Evolutionary adjustments such as

increased foot area might be important for species that

run and walk on loose sand dunes, given that total area

in contact with the surface may change friction coeffi-

cients. The sand specialist Uma scoparia, for example,

exhibits many morphological modifications associated

with locomotion on sand, including fringed toes, smooth

skin, and short tail and hind limbs, characteristics that

may favour quick running and burrowing in the sand

(Carothers, 1986; Irschick & Garland, 2001). Niveoscincus

species that run on sand exhibit relatively long feet,

which presumably increase the propulsive force in both

running and jumping on a loose substrate (Melville &

Swain, 2000).

The diameter of cylindrical substrates, from tree trunks

to twigs, also affects mechanical demands for locomotion,

and such demands differ from those of flat surfaces. Perch

diameter influences locomotor performance in Anolis

species, particularly in those with long legs (Losos &

Sinervo, 1989). Arboreal habitats involve locomotion on

trunks or branches with variable angles and diameters.

This complex three-dimensional environment imposes

several functional challenges (Higham et al., 2001;

Irschick & Garland, 2001; Spezzano & Jayne, 2004),

and favours the evolution of morphological adaptations

that improve body stability and manoeuvreability (Van

Damme & Vanhooydonck, 2002). For example, squamate

clinging ability may be enhanced by increased nail

lengths (Zani, 2000).

Tropidurinae (Iguania: Tropiduridae; Frost, 1992) is a

suitable model for investigating eco-morphological rela-

tionships because it is diverse in habitat and substrate

usage. Tropidurinae species can be found in forested and

nonforested habitats (Kohlsdorf et al., 2001), the latter

including Caatingas (Brazilian habitat characterized by

sandy soil and scattered shrubs, for a description see

Rocha, 1998) and Cerrados (Brazilian habitat similar to a

savannah, characterized by scattered trees and bushes

and exposed rocks, for a description see Van Sluys, 1991).

Some Tropidurinae species are arboreal (e.g. Vitt, 1991a;

Vitt et al., 1997; Ellinger et al., 2001, Kohlsdorf et al.,

2008) and frequently experience vertical climbing, where

nails may play a relevant role in clinging performance,

whereas other species are strictly ground-dwelling and,

specifically when moving over sand dunes, do not have

to attach to the substrate but must deal with the low

friction and force restitution coefficients associated with

locomotion over loose surfaces. In the present study, we

investigate evolutionary changes in foot morphology,

body size, and limb and tail proportions associated with

the use of different substrates by Tropidurinae species.

Specifically, we test the hypothesis that both ‘gross

morphology’ (body size and limb proportions) and

finer-scale aspects of foot morphology are associated

with the use of different Brazilian habitats by tropical

tropidurines.

Methods

Animals, measurements, and ecological data

Six morphometric traits of the right feet (length, width

and height of the fourth toe, nail length, foot sole width

and length) were measured on adult males of 23 species

from Tropidurinae (Table 1) available in the collection of

the Museum of Zoology from the University of São Paulo

(MZUSP), SP, Brazil. The number of individuals from

each species ranged from four to 20 according to

availability. Because of limitations of the collection, data

from two populations were pooled for Uracentron flaviceps,

Tropidurus cocorobensis, T. hygomi, Plica plica, and P. umbra.

For the other species, only individuals from the best-

represented population were considered. All measures

were made by MBG, using digital calipers to the nearest

0.01 mm.

Since the publication of a previous paper on related

topics (Kohlsdorf et al., 2001), a more recent phylogenetic

hypothesis has become available for the Tropidurinae

sub-family (Frost et al., 2001). Consequently, data pre-

sented in that paper were also re-analysed here together

with the new information available. The morphometric

traits re-analysed were: SVL, tail, femur, tibia, humerus,

and hand+radius lengths. All species included in the

phylogeny proposed by Frost et al., (2001) and available

in the Museum of Zoology of University of São Paulo

(MZUSP) were included. Thus, in the present study we

analyse in an integrated approach the previous data on

limb and tail proportions from Kohlsdorf et al. (2001),

including new species available at the MZUSP, and the
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refined morphometric data for the feet of Brazilian

tropidurines that are still unpublished.

Five categories of substrates used by Tropidurinae were

identified as sand, rocks, branches, tree trunks and

ground, and the use of these ecological settings was

treated as a continuum (i.e. inside each category the

proportion of substrate usage could gradually range from

zero to one), as many species can be found in more than

one habitat type, therefore using more than one kind of

substrate. Thus, ecological indices were built as an

attempt to estimate the proportion of substrate usage

by individuals in a population (Table 2). This estimation

was based on published information (Table 2) of how

many individuals were captured in a given substrate,

resulting in a value ranging from zero (none of the

individuals sampled using that substrate type) to one (all

individuals sampled using that substrate type) for each of

the five substrate categories adopted (branches, trunks,

sand, rocks and ground). For example, for a given

population that is strictly ground-dwelling in sand dunes,

the indices for branches, trunks and rocks would be equal

to zero, whereas the index for sand would be equal to

one. Alternatively, a more generalist population from an

arboreal species could present indices equal to 0.5 for

trunks and branches (in this case, half of the individuals

would be found on trunks and half on branches), and the

indices for ground, sand and rocks would be equal to

zero. This ecological information was confirmed by the

field experience of TK, MBG and CAN with many

Tropidurinae species from nonarboreal habitats (e.g.

T. itambere, T. oreadicus, T. hispidus, T. torquatus, T. hygomi,

T. psammonastes, T. semitaeniatus, T. cocorobensis, T. erythro-

cephalus, E. divaricatus, E. amathites). It is important to

point out that although these indices are based on ratios

of microhabitat selection by individuals in a species, they

might be biased by differences among populations.

However, we have tried, whenever it was possible, to

measure a population of each species included in the

present study for which we had published data on habitat

usage available or that we knew had a similar ecological

profile to the ones described in the literature. About 44%

of the populations measured corresponded to the same

population for which published information was avail-

able, and additional 30% of the populations measured

Table 1 Means and standard errors of foot morphological traits for each Tropidurinae species.

Species

Tip

Order n SVL Foot length Toe length Toe width Toe height

Foot sole

length

Foot sole

width Nail length

U. superciliosum* 1 20 113.16 ± 2.22 40.27 ± 0.66 24.29 ± 0.40 1.15 ± 0.03 1.25 ± 0.03 15.98 ± 0.29 5.88 ± 0.16 2.93 ± 0.09

E. divaricatus� 2 20 77.12 ± 2.15 23.15 ± 0.52 13.28 ± 0.32 0.73 ± 0.03 0.83 ± 0.03 9.86 ± 0.22 3.70 ± 0.14 2.27 ± 0.06

E. amathites� 3 20 63.77 ± 1.33 22.82 ± 0.31 12.63 ± 0.17 0.64 ± 0.02 0.77 ± 0.02 10.19 ± 0.19 3.05 ± 0.07 1.83 ± 0.07

E. nanuzae� 4 20 48.29 ± 0.97 14.33 ± 0.27 7.68 ± 0.16 0.43 ± 0.01 0.52 ± 0.02 6.65 ± 0.15 2.31 ± 0.05 1.14 ± 0.04

S. torquatus� 5 15 89.64 ± 1.69 26.08 ± 0.44 15.56 ± 0.28 0.77 ± 0.03 0.92 ± 0.03 10.51 ± 0.18 4.12 ± 0.10 2.09 ± 0.07

U. azureus§ 6 4 74.07 ± 1.99 21.08 ± 0.42 11.86 ± 0.38 0.74 ± 0.02 0.96 ± 0.04 9.21 ± 0.12 3.69 ± 0.05 1.55 ± 0.04

U. flaviceps§ 7 10 79.29 ± 5.90 21.19 ± 1.23 12.13 ± 0.67 0.69 ± 0.04 0.85 ± 0.05 9.06 ± 0.57 3.53 ± 0.23 1.58 ± 0.14

P. umbra– 8 20 80.39 ± 1.31 26.60 ± 0.36 15.34 ± 0.23 0.67 ± 0.02 0.77 ± 0.02 11.25 ± 0.17 3.39 ± 0.07 1.64 ± 0.04

P. plica– 9 20 140.88 ± 4.43 47.34 ± 1.06 27.96 ± 0.67 1.12 ± 0.03 1.45 ± 0.05 19.38 ± 0.46 6.27 ± 0.20 2.81 ± 0.10

T. spinulosus** 10 20 94.51 ± 3.45 27.41 ± 0.85 15.94 ± 0.49 0.87 ± 0.04 1.06 ± 0.05 11.47 ± 0.37 4.59 ± 0.18 2.10 ± 0.11

T. semitaeniatus** 11 20 85.95 ± 0.85 25.75 ± 0.29 13.54 ± 0.22 0.92 ± 0.01 1.06 ± 0.02 12.21 ± 0.12 3.98 ± 0.07 1.62 ± 0.04

T. hygomi** 12 20 65.60 ± 0.96 25.68 ± 0.25 14.39 ± 0.17 0.81 ± 0.01 0.92 ± 0.02 11.29 ± 0.10 3.68 ± 0.07 1.66 ± 0.04

T. itambere** 13 20 73.79 ± 2.17 20.79 ± 0.46 10.67 ± 0.24 0.70 ± 0.03 0.84 ± 0.03 10.11 ± 0.23 3.57 ± 0.12 1.75 ± 0.07

T. psammonastes** 14 15 88.42 ± 2.12 31.01 ± 0.47 17.06 ± 0.26 1.07 ± 0.03 1.07 ± 0.04 13.95 ± 0.24 4.94 ± 0.16 2.37 ± 0.10

T. cocorobensis** 15 17 66.31 ± 1.58 22.63 ± 0.34 12.57 ± 0.20 0.63 ± 0.02 0.75 ± 0.02 10.06 ± 0.18 3.32 ± 0.08 1.80 ± 0.06

T. etheridgei** 16 20 82.11 ± 1.18 22.32 ± 0.33 11.74 ± 0.22 0.75 ± 0.02 0.88 ± 0.02 10.58 ± 0.14 4.02 ± 0.06 1.93 ± 0.05

T. montanus** 17 20 90.49 ± 1.64 25.82 ± 0.48 13.70 ± 0.27 0.85 ± 0.02 0.98 ± 0.03 12.12 ± 0.22 4.32 ± 0.13 1.82 ± 0.06

T. erythrocephalus** 18 20 76.95 ± 1.40 23.06 ± 0.38 12.11 ± 0.24 0.68 ± 0.01 0.79 ± 0.02 10.95 ± 0.16 3.62 ± 0.07 1.56 ± 0.04

T. mucujensis** 19 4 66.67 ± 2.42 20.70 ± 0.38 11.18 ± 0.33 0.53 ± 0.01 0.65 ± 0.02 9.51 ± 0.20 3.10 ± 0.09 1.72 ± 0.10

T. insulanus** 20 20 77.50 ± 1.44 21.20 ± 0.29 10.78 ± 0.18 0.80 ± 0.02 0.94 ± 0.03 10.42 ± 0.15 3.62 ± 0.06 1.49 ± 0.04

T. oreadicus** 21 20 97.23 ± 1.29 28.59 ± 0.40 15.37 ± 0.28 0.88 ± 0.02 1.03 ± 0.02 13.21 ± 0.17 4.68 ± 0.06 2.40 ± 0.05

T. hispidus** 22 20 85.40 ± 2.25 26.31 ± 0.62 13.88 ± 0.34 0.95 ± 0.03 1.11 ± 0.06 12.43 ± 0.31 4.62 ± 0.15 1.76 ± 0.06

T. torquatus** 23 20 102.00 ± 2.05 32.11 ± 0.52 17.53 ± 0.30 1.00 ± 0.03 1.15 ± 0.03 14.58 ± 0.26 5.44 ± 0.14 2.38 ± 0.08

Measurements are given in millimeters; number of individuals measured for each species (n) is shown.

Names follow Frost et al. (2001), being:

*Uranoscodon sp.

�Eurolophosaurus sp.

�Strobilurus sp.

§Uracentron sp.

–Plica sp.

**Tropidurus sp.
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were at least from the same Brazilian State (but not

exactly the same locality); from the remaining 26%

species measured (for which information was published

for populations from different Brazilian States), half of

the cases (three species) belong to species claimed as

relatively conservative regarding substrate usage

(Uracentron flaviceps and U. azureus, and Plica umbra),

while two other species are considered as generalists in

relation to substrate usage (Tropidurus oreadicus and

T. torquatus), and therefore had their ecological indices

calculated from compiled information from multiple

studies. Despite the possible limitation and subjectivity of

this approach, the inferred ecological indices might reflect

in an unambiguous manner the ordinal intraspecific

differences in substrate usage by Tropidurinae species.

Statistical analysis

Mean values of all measured traits (shown in Table 1)

were log10 transformed prior to statistical analysis. To

remove the effects of body size differences among species,

all log-transformed traits (except SVL) were regressed on

snout-vent length and residuals were calculated.

In general, whether conventional or phylogenetic

statistical analysis should be more reliable for a given

empirical data set depends on whether a trait shows

phylogenetic signal (sensu Blomberg et al., 2003; see also

Freckleton et al., 2002; Lavin et al., 2008; Ives & Garland,

2009). Therefore, we used the randomization test

described in Blomberg et al. (2003) to test for phyloge-

netic signal and also computed their K statistic to indicate

the amount of signal. In addition, we report the Mean

Squared Error (MSE) and the ln likelihood for both a star

and the hierarchical phylogenies for each trait analysed.

A lower MSE or a higher likelihood indicates a better fit

to the tip data. Thus, if a star phylogeny better fits a set of

tip data (i.e. has a lower MSE and higher likelihood),

then the randomization test for phylogenetic signal

usually will be nonsignificant, although exceptions occur

because the two approaches test somewhat different null

hypotheses (see Blomberg et al., 2003). The foregoing

tests and statistics were computed with PHYSIG_LL.M

(available by request to TG) in MATLABMATLAB version 6.1.0 for

Windows PCs.

We based our analyses on the topology proposed by

Frost et al. (2001), which is the most comprehensive

current phylogenetic hypothesis for the Tropidurinae

group (Fig. 1). This topology adds molecular information

to the morphological characters used by Frost (1992) and

Harvey & Gutberlet (2000), incorporates a few additional

species to the sub-family Tropidurinae (particularly from

sandy habitats), and does not present polytomies (Fig. 1).

Phylogenetically based statistical methods generally

require branch lengths in units proportional to the

expected variance of character evolution for each char-

acter analysed (reviewed in Rezende & Garland, 2003;

Table 2 Ecological indices estimated for the use of five substrates by Tropidurinae species.

Species Sand Rocks Trunk Branches Ground Literature source

Uranoscodon superciliosum 0.00 0.06 0.66 0.00 0.28 Howland et al., 1990

Eurolophosaurus divaricatus 1.00 0.00 0.00 0.00 0.00 Rodrigues, 1986

Eurolophosaurus amathites 1.00 0.00 0.00 0.00 0.00 Rodrigues, 1984, 1996

Eurolophosaurus nanuzae 0.00 1.00 0.00 0.00 0.00 Rodrigues, 1981

Strobilurus torquatus 0.00 0.00 0.66 0.26 0.08 Rodrigues et al., 1989

Uracentron azureus 0.00 0.00 0.00 1.00 0.00 Ellinger et al., 2001

Uracentron flaviceps 0.00 0.00 0.00 0.97 0.03 Vitt & Zani, 1996

Plica umbra 0.00 0.00 0.87 0.08 0.05 Vitt et al., 1997

Plica plica 0.00 0.00 1.00 0.00 0.00 Vitt, 1991a

Tropidurus spinulosus 0.00 0.00 0.97 0.00 0.03 Colli et al., 1992; Vitt, 1991b

Tropidurus semitaeniatus 0.00 1.00 0.00 0.00 0.00 Vitt, 1993, 1995; Rodrigues, 1996

Tropidurus hygomi 0.90 0.00 0.00 0.10 0.00 Vanzolini & Gomes, 1979

Tropidurus itambere 0.00 1.00 0.00 0.00 0.00 Van Sluys, 1993, 1998

Tropidurus psammonastes 1.00 0.00 0.00 0.00 0.00 Rodrigues, 1988, 1996

Tropidurus cocorobensis 1.00 0.00 0.00 0.00 0.00 Rodrigues et al., 1989; Rodrigues, 1996

Tropidurus etheridgei 1.00 0.00 0.00 0.00 0.00 Vitt, 1991b

Tropidurus montanus 0.00 0.82 0.00 0.00 0.18 Rodrigues, 1988; Van Sluys et al., 2004

Tropidurus erythrocephalus 0.00 1.00 0.00 0.00 0.00 Rodrigues, 1988, 1996

Tropidurus mucujensis 0.00 1.00 0.00 0.00 0.00 Rodrigues, 1988

Tropidurus insulanus 0.00 1.00 0.00 0.00 0.00 Rodrigues, 1987

Tropidurus oreadicus 0.00 0.35 0.35 0.00 0.30 Colli et al., 1992; Vitt & Caldwell, 1993

Tropidurus hispidus 0.95 0.03 0.00 0.00 0.02 Rodrigues, 1988; Vitt, 1995; Vitt et al., 1996; Van Sluys et al., 2004

Tropidurus torquatus 0.45 0.50 0.00 0.05 0.00 Rodrigues 1981, 1988; Araújo, 1991; Bergallo & Rocha, 1993;

Rocha & Bergallo, 1997

Values indicate the proportion of individuals usually found using each ecological category, based both on personal observations ⁄
communications and the literature available, listed in the column in the right.
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Garland et al., 2005). Although the clade Iguania might

have originated between 150 (Wiens et al., 2006) and

180 Mya (Vidal & Hedges, 2005), Tropiduridae likely

originated only in the Miocene (< 24 Mya; Conrad et al.,

2007). However, precise estimates of phylogenetic

branch lengths in units of divergence times or genetic

distances are unavailable for the Tropidurinae topology

used. Therefore, we tried four different types of arbitrary

branch lengths, including all = 1 (Constant), Grafen

(1989), Pagel (1992), and Nee (cited in Purvis, 1995,

p. 416). Constant and Nee arbitrary branch lengths

provided the best standardization of phylogenetically

independent contrasts, as indicated by the absence of

statistically significant trends in diagnostic plots for most

traits (Garland et al., 1992). Therefore, we used both of

these arbitrary branch lengths. The MS-DOS computer

program PDTREE (Garland et al., 1993, 1999; Garland &

Ives, 2000) was used to enter trees and to examine

diagnostic plots of independent contrasts. We acknowl-

edge that our analyses would probably be more powerful

if branch lengths in units of divergence time were used

(e.g. Dı́az-Uriarte & Garland, 1998; Garland &

Dı́az-Uriarte, 1999), but molecular information is not

available for all Tropidurinae species used in the present

study (see Frost et al., 2001). If in the future a newer

phylogenetic study attempts to estimate branch lengths

from molecular data, based for example on paleontolog-

ical information (e.g. Marjanovic & Laurin, 2007; Laurin

et al., 2009), then it would be appropriate to reanalyse

our data.

We performed both conventional and phylogenetic

statistics based on Principal Component Analysis (PCA)

of the morphometric data (e.g. see Clobert et al., 1998),

followed by regressions of the PC scores on the five

ecological indices. First, a PCA was performed, using SPSSSPSS

v.12.0 for PC, for the twelve morphometric traits studied

(SVL and residuals of tail, nail, tibia, femur, humerus,

hand+radius lengths and digit length, height and width,

and foot sole length and width). Principal components

with eigenvalues >1 were retained for further analysis.

The PC scores were also saved and then used as input for

regression models with the ecological indices entered as

independent variables. We used the REGRESSIONREGRESSIONv.2.M

MATLABMATLAB (version 6.1.0 for PC) program of Lavin et al.

(2008) to implement phylogenetic generalized least-

squares (PGLS) analysis (this program is available on

request from TG). The MS-DOS computer program

PDDISTPDDIST (Garland & Ives, 2000) was used to generate the

necessary phylogenetic variance-covariance matrix used

in the analysis (Garland et al., 2005; Lavin et al., 2008).

The REGRESSIONREGRESSIONv.2.M program also computes ordinary

least-squares (OLS) regressions, which are equivalent to
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Eurolophosaurus divaricatus

Eurolophosaurus amathites

Eurolophosaurus nanuzae

Strobilurus torquatus

Uracentron azureus
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Tropidurus spinulosus

Tropidurus semitaeniatus
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Rocks and sand

Rocks

Species Main substrate

Fig. 1 Phylogenetic tree used for compara-

tive statistical analysis in the present study,

with the main substrate used by each species,

inferred from data presented in Table 2. The

topology follows fig. 6 of Frost et al. (2001);

branch lengths are arbitrary and follow

Pagel (1992).
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assuming that the phylogeny is a star (single hard

polytomy) with contemporaneous tips (Purvis & Garland,

1993). Note that the PGLS results from REGRESSIONREGRESSIONv.2.M

are the same as what can be obtained by use of

phylogenetically independent contrasts.

Whether a conventional or phylogenetic regression

analysis is more reliable can be judged by comparison of

the likelihoods of the two models (e.g. see Lavin et al.,

2008), with a higher likelihood indicating a better fit to

the tip data. When two regression models have the same

number of parameters, then, as a rule of thumb, if twice

the difference in ln likelihoods exceeds 3.841 (the critical

value for a v2 distribution with 1 d.f. and a = 0.05), then

one model can be considered ‘significantly’ better than

then other (e.g. see Felsenstein, 2004, p. 309). Beyond

this, a regression model can be fitted while simulta-

neously allowing the branch lengths to vary such that a

continuum of trees between a star and the hierarchical

tree is considered (Grafen, 1989; Freckleton et al., 2002;

Duncan et al., 2007; Spoor et al., 2007; Lavin et al., 2008;

Gartner et al., 2010). These models contain one additional

parameter (for transformation of the branch lengths to

maximize the likelihood of the model), and so their fit

can be compared with that for the models using a star or

the original tree by use of a log likelihood ratio test with 1

degree of freedom. However, we did not use these

transformation models in the present study due to the

relatively small sample size of 23 species. It is also

possible to use regression models that account for within-

species variation (Ives et al., 2007), but we did not have

estimates of the standard errors for the ecological indices.

To control for the multiple comparisons presented in

Table 5, we carried out a False Discovery Rate (FDR)

analysis using the QVALUEQVALUE software package (Storey,

2002) for R (version 2.4.0; R Development Core Team,

2007). The total number of hypotheses under test in

Table 5 is 60. Given the relatively low number of

P-values, we used the ‘bootstrap’ option of QVALUEQVALUE in

estimating the proportion of true null hypotheses.

Results of the FDR analysis indicated that a more

conservative level of a = 0.0218 (corresponding to a

positive false discovery rate of 5%; Storey, 2002) is

appropriate given the number of hypotheses tested and

the distribution of P-values we obtained. In Table 5, we

present nominal P-values for two-tailed tests, but indi-

cate in bold those that have P-values £ 0.0218.

Results

Means and standard errors of traits measured in this

study for all species considered are presented in Table 1.

Data reported previously in Kohlsdorf et al. (2001) were

analysed together with the new data for foot morphology

generated for the present study. The phylogeny proposed

by Frost et al. (2001) includes four additional sand species

scattered across the topology (Fig. 1), thus enhancing

statistical power (see Garland, 2001 and references

therein) in comparison with our previous study

(Kohlsdorf et al., 2001).

As shown in Table 3, none of the body-size corrected

traits related to foot morphology exhibited statistically

significant phylogenetic signal, based on the randomiza-

tion test of Blomberg et al. (2003; P > 0.05) using both

Constant and Nee arbitrary branch lengths), nor did the

measurement of body size (SVL, Table 3). However, tail

length and one of the traits related to the front limb

(hand+radius length) did exhibit significant phylogenetic

signal (see Table 3, P < 0.05). The lack of phylogenetic

signal based on the randomization test is corroborated by

the comparison of likelihoods, which are higher for the

star than the hierarchal tree, except for tail length

(Table 3). The discrepancy to this pattern for hand+

radius length reflects the fact that the randomization test

and comparison of likelihoods are not testing exactly the

same null hypothesis (see Blomberg et al., 2003; Ives &

Garland, 2009).

The Principal Component Analysis based on SVL and

residuals of eleven morphometric traits resulted in four

components with eigenvalues >1 (Table 4). Component

one explained 31.5% of the variance and was related to

foot sole shape (foot sole width and length); the second

component explained 27.0% of the variance and was

mostly related to femur length; the third component

explained 13.3% of the variance and enclosed variables

associated with the toe shape (toe width and height and

nail length) and to humerus length; finally, component

four explained 9.1% of the variance and was related to

body size (SVL) and to toe, tail, tibia and radius+hand

lengths. The tropidurine species with larger foot soles

were clearly associated with the use of sandy substrates,

as indicated by the regression for the scores of the first PC

and the ecological indices (result confirmed both by

conventional and phylogenetic analyses), while species

with narrower foot soles were associated with a frequent

use of rocks and branches (Fig. 2, Table 5). Also, species

that often move along trunks exhibit longer femora, a

result confirmed both by conventional and the phyloge-

netic analyses performed using Nee branch lengths

(Table 5).

As discussed in the methods, likelihoods can be used to

judge if a conventional or a phylogenetic analysis is more

reliable. In this context, the result relating foot sole shape

(PC1) with use of branches was only supported by the

conventional statistics, but the difference in likelihoods

was larger than two (so twice the difference in ln

likelihoods exceeded 3.841, see Table 5) and this model is

preferred over the phylogenetic ones. The significant

regression between the second principal component

(related to femur length) and the ecological indices for

‘branches’ was restricted to the phylogenetic analysis,

but, due to its higher likelihood (Table 5), the result from

the phylogenetic statistics should be preferred. It is

important to point out, however, that the difference in

ln likelihoods in this analysis was less than two, so we
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cannot conclude that one model is ‘significantly’ better

than the other.

Discussion

The present study is one of the first to investigate the

evolution of several morphometric traits (body size, limb

and tail proportions, and refined aspects of foot shape

and size) using the integrative approach of identifying

principal components that associate specific traits and

correlating those with habitat usage, treated as a set of

continuous-valued indices. Although substrate type was

divided into five distinct categories, the percentage of

substrate usage within each category might vary from

zero to one, which reflects the gradual ecological

variation that exists among some tropidurines as well

Table 3 Indicators of phylogenetic signal for morphometric traits.

Trait Branches MSEtree MSEStar K P phylogenetic signal ln Likelihood tree ln Likelihood star

SVL Nee 0.0110 0.0089 0.5680 0.204 19.78 22.21

Constant 0.0105 0.5732 0.103 20.22

Toe length Nee 0.0179 0.0137 0.5586 0.279 14.12 17.23

Constant 0.0173 0.8134 0.172 14.56

Toe width Nee 0.0129 0.0104 0.5668 0.186 17.87 20.40

Constant 0.0124 0.6110 0.140 18.34

Toe height Nee 0.0119 0.0092 0.5419 0.264 18.88 21.84

Constant 0.0112 0.5058 0.166 19.50

Foot sole length Nee 0.0119 0.0089 0.5193 0.348 18.83 22.17

Constant 0.0115 0.5186 0.236 19.26

Foot sole width Nee 0.0126 0.0097 0.5396 0.260 18.18 21.21

Constant 0.0122 0.6128 0.172 18.59

Nail length Nee 0.0155 0.0092 0.4321 0.764 15.77 21.82

Constant 0.0145 0.6856 0.689 16.55

Tail length Nee 0.0333 0.0349 0.7502 0.022* 7.00 6.45

Constant 0.0327 0.9334 0.010* 7.20

Tibia length Nee 0.0165 0.0116 0.4846 0.445 15.11 19.16

Constant 0.0151 0.3724 0.246 16.13

Femur length Nee 0.0169 0.0144 0.5963 0.190 14.80 16.64

Constant 0.0160 0.5510 0.051 15.45

Humerus length Nee 0.0161 0.0131 0.5676 0.211 15.32 17.72

Constant 0.0148 0.4461 0.074 16.30

Radius+hand length Nee 0.0130 0.0112 0.6001 0.134 17.85 19.55

Constant 0.0120 0.5076 0.028* 18.76

Significant values indicated by an asterisk. All traits were log-transformed, and effects of SVL were removed prior to analysis as described

in Blomberg et al. (2003).

Table 4 Component scores resulting from

a Principal Component Analysis (PCA)

performed on the morphometric traits.

PC 1 PC 2 PC 3 PC 4

Eigenvalue ⁄ %variation explained 3.78 ⁄ 31.46 3.24 ⁄ 27.00 1.60 ⁄ 13.30 1.09 ⁄ 9.06

SVL 0.011 0.015 )0.041 )0.523

Toe Length 0.179 0.071 )0.098 0.476

Toe Width 0. 182 )0.164 0.268 )0.070

Toe Height 0.146 )0.140 0.414 )0.019

Foot Sole Length 0.245 0.064 0.005 )0.038

Foot Sole Width 0.190 )0.169 0.093 0.038

Nail 0.123 )0.073 )0.393 0.378

Tail 0.170 0.135 )0.227 )0.277

Tibia 0.158 0.200 )0.061 )0.206

Femur 0.083 0.266 0.110 )0.127

Humerus )0.078 0.183 0.291 0.239

Radius-Hand 0.001 0.237 0.239 0.277

All traits were log-transformed, and effects of body size were removed prior to analysis by

computing residuals from regressions on SVL (except for SVL itself). Traits contributing most

to each component are indicated in bold. The total amount of variance in the data explained

by these first four principal components is 80.8%.
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as the multiple uses of different ecological settings by

others. This innovative approach enabled the identifica-

tion of morphological changes in foot sole shape (foot

sole length and width, captured in PC1: Table 4) asso-

ciated to the frequent use of sandy environments by

some Tropidurinae and the use of rocks or branches by

other species (Table 5). Specifically, Tropidurinae species

that locomote mostly on sand exhibit larger foot soles

(longer and wider), a morphological profile that proba-

bly counters the energetic and mechanical limitations

associated with the low friction and force restitution

coefficients implied by locomotion on sand (Lejeune et

al., 1998). In contrast, species that often move on rocks

and branches exhibit narrower foot soles, which may

directly affect the clinging ability of these squamates.

Morphological variation in limb proportions is also

associated with the use of forested habitats, as arboreal

tropidurines that move more often in trunks exhibit

longer femora. Together, these findings strongly suggest

that adaptive changes in the overall morphology inte-

grating foot shape and hind limb size played a role in the

colonization of several habitats (which actually represent

continua of ecological settings) by Tropidurinae lineages.

Considering recent estimates for the origin of Tropiduri-

dae (in the Miocene, less than 24 Mya; Conrad et al.,

2007), it is possible to assume that these adaptive

changes may have occurred in a relatively narrow

window of evolutionary time.

The evolution of foot sole shape in Tropidurinae is

particularly interesting in the ecological context of

differential habitat use, as it provides evidence that the

shape of a given morphological trait might evolve in

opposite directions according to the mechanical and

energetic demands imposed by locomotion in contrasting

surfaces. In the present study, the ancestral morpholog-

ical and ecological states for the Tropidurinae sub-family

were not formally reconstructed, but given that the

species using mostly sand, rocks or branches likely

evolved from a single ancestor originated in forested

habitats (Howland et al., 1990), the large foot soles

exhibited by sand species and the narrow feet of species

that use mostly rocks and branches may represent

extremes of a continuum not only in habitat use but

also in morphological change. At this point, it is not

possible to state that these differences in foot morphology

have occurred in the same way (for a broad discussion

about homology, see Wagner, 1989a,b), as the genetic

and developmental mechanisms underlying foot sole

reduction and broadening in Tropidurinae are unknown,

and the specific osteological and muscular structures that

changed during the evolutionary processes of foot sole

differentiation cannot be inferred solely from the two

linear measurements obtained. Even so, the morpholog-

ical specialization observed in the foot soles of Tropid-

urinae suggests that a shape that probably maximizes

performance of these squamates in sand is opposite to the

shape that probably enhances locomotion on rocks or

branches, corroborating the idea that evolution of some

morphological traits often occurs in close association with

the ecological setting used by a given species and that this

may lead to trade-offs (Garland & Losos, 1994; Clobert

et al., 2000; but see Goodman et al., 2007).

Adaptations in foot morphology associated with the

use of sandy habitats by Tropidurinae likely lead to

differences in locomotor performance between species

that often locomote on sand and other tropidurines that

are rarely (or never) found in open sand dunes. Consid-

ering the increased risk of predation and overheating in

sandy environments (Lima & Dill, 1990), high-speed

locomotion between refuges might be favoured by

natural selection in this habitat. In fact, the sand species

T. psammonastes runs faster than congenerics from rocky

habitats, particularly when running on sand (Kohlsdorf

et al., 2004), and in general Tropidurinae species that live

in the Caatingas perform more horizontal jumps during

obstacle-crossing than tropidurines from the rocky

Cerrados (Kohlsdorf & Navas, 2007). The main evidence

for the influence of morphology on running performance,
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to species from sandy habitats, square indicates trunk species, cross

indicates branch species, open circle indicates rock species, and filled

circles indicate species that use equally more than one substrate

type.
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associated with differentiated habitat usage, comes from

studies focusing on limb proportions and body size. In

Anolis squamates, species that are morphologically similar

exhibit comparable locomotor performance (Losos,

1990a), and an increase in body size and relative hind

limb length improves sprint speed (Losos, 1990b).

Among phrynosomatid squamates, the subclade termed

‘sand lizards’ also has higher sprint speeds associated with

longer hind limbs, in comparison with other species from

the same family (Bonine & Garland, 1999; Bonine et al.,

2001, 2005). Regarding foot morphology, removal of the

toe fringes of the strictly sand-dwelling phrynosomatid

Uma scoparia reduces maximal sprint speed and acceler-

ation on sand, but not on rubber surfaces (Carothers,

1986). Melville & Swain (2000) suggested that the long

feet of saxicolous Niveoscincus squamates are associated

Table 5 Results of regressions of the scores of the four principal components obtained from morphometric data (Table 4) on the five ecological

indices (Table 2), using both conventional and phylogenetic [with Nee and Constant (All=1) branch lengths] analyses.

PC1 PC2 PC3 PC4

SAND Conventional t ⁄ P 3.069 ⁄ 0.0058 0.425 ⁄ 0.6752 0.727 ⁄ 0.4753 1.304 ⁄ 0.2063

ln Likelihood )27.86 )30.02 )31.83 )30.88

Partial Regression Coefficient 1.217 0.222 )0.343 0.590

Phylogenetic(Nee) t ⁄ P 3.503 ⁄ 0.0021 2.248 ⁄ 0.0354 0.339 ⁄ 0.7380 1.049 ⁄ 0.3061

ln Likelihood )27.67 )31.37 )33.42 )32.39

Partial Regression Coefficient 1.314 )0.990 )0.192 0.483

Phylogenetic(All = 1) t ⁄ P 2.814 ⁄ 0.0104 2.168 ⁄ 0.0418 0.625 ⁄ 0.5387 1.304 ⁄ 0.2063

ln Likelihood )27.86 )30.61 )33.72 )30.88

Partial Regression Coefficient 1.217 )0.919 )0.303 0.624

ROCKS Conventional t ⁄ P 0.772 ⁄ 0.4487 1.071 ⁄ 0.2963 0.270 ⁄ 0.7898 1.857 ⁄ 0.0774

ln Likelihood )31.80 )31.51 )32.08 )30.02

Partial Regression Coefficient )0.370 0.507 0.133 )0.824

Phylogenetic(Nee) t ⁄ P 2.935 ⁄ 0.0079 1.648 ⁄ 0.1142 0.881 ⁄ 0.3883 1.225 ⁄ 0.2341

ln Likelihood )29.00 )32.45 )32.71 )32.18

Partial Regression Coefficient )1.134 0.739 0.578 )0.543

Phylogenetic(All =1) t ⁄ P 2.478 ⁄ 0.0218 1.895 ⁄ 0.0719 1.394 ⁄ 0.1779 1.357 ⁄ 0.1892

ln Likelihood )31.80 )31.12 )32.92 )31.69

Partial Regression Coefficient )1.014 0.507 0.639 )0.590

TRUNKS Conventional t ⁄ P 0.455 ⁄ 0.6538 2.567 ⁄ 0.0180 0.625 ⁄ 0.5387 0.491 ⁄ 0.6285

ln Likelihood )32.01 )28.98 )31.92 )31.64

Partial Regression Coefficient )0.027 1.368 )0.379 )0.294

Phylogenetic(Nee) t ⁄ P 0. 551 ⁄ 0.5874 2.496 ⁄ 0.0210 1.421 ⁄ 0.1700 0.650 ⁄ 0.5227

ln Likelihood )32.79 )30.86 )32.45 )31.64

Partial Regression Coefficient 0.431 1.797 )1.096 )0.508

Phylogenetic(All = 1) t ⁄ P 0.373 ⁄ 0.7129 1.669 ⁄ 0.1100 1.596 ⁄ 0.1254 0.809 ⁄ 0.4276

ln Likelihood )33.188 )31.50 )32.62 )32.30

Partial Regression Coefficient 0.272 1.133 1.137 )0.568

BRANCHES Conventional t ⁄ P 2.857 ⁄ 0.0094 1.550 ⁄ 0.1361 2.118 ⁄ 0.0463 1.811 ⁄ 0.0845

ln Likelihood )28.34 )30.87 )29.89 )29.98

Partial Regression Coefficient )1.868 )1.132 1.481 1.27

Phylogenetic(Nee) t ⁄ P 1.381 ⁄ 0.1818 2.560 ⁄ 0.0182 1.450 ⁄ 0.1618 1.354 ⁄ 0.1901

ln Likelihood )31.96 )30.72 )32.41 )32.01

Partial Regression Coefficient )1.381 )2.422 1.476 1.355

Phylogenetic(All = 1) t ⁄ P 1.210 ⁄ 0.2397 2.537 ⁄ 0.0192 1.308 ⁄ 0.2050 1.811 ⁄ .0845

ln Likelihood )32.48 )29.86 )33.03 )30.11

Partial Regression Coefficient )1.316 )2.42 1.457 1.278

GROUND Conventional t ⁄ P 0.272 ⁄ 0.7883 0.013 ⁄ 0.9898 1.399 ⁄ 0.1764 1.211 ⁄ 0.2393

ln Likelihood )32.08 )32.12 )31.10 )31.00

Partial Regression Coefficient 0.672 0.074 )3.312 )2.856

Phylogenetic(Nee) t ⁄ P 0.151 ⁄ 0.8814 0.589 ⁄ 0.5621 1.541 ⁄ 0.1383 0.033 ⁄ 0.9740

ln Likelihood )32.95 )33.66 )32.27 )32.97

Partial Regression Coefficient 0.340 1.365 )3.362 )0.075

Phylogenetic(All = 1) t ⁄ P 0.393 ⁄ 0.6983 0.430 ⁄ 0.6716 1.471 ⁄ 0.1561 1.413 ⁄ 0.1723

ln Likelihood )33.17 )32.84 )32.81 )31.61

Partial Regression Coefficient 0.84 0.944 )3.220 1.480

Values of significance (two-tailed) are presented, and the ones lower than 0.0218 (based on a False Discovery rate analysis – see text) are

indicated in bold. Likelihood values and partial regression coefficients are also presented.
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with high sprint speeds and presumably increased pro-

pulsive forces for running and jumping. Also, scincid

squamates living at sand dunes in Egypt exhibit differ-

ences in limb and foot morphology that seem associated

with habitat partitioning and may be related to predator

escape (Attum et al., 2007). Future kinematic and

biomechanical studies on Tropidurinae species from

different habitats running over sandy and hard surfaces

would elucidate whether the morphological profile of

squamates with increased foot sole areas in contact with

substrate actually improves performance on surfaces that

hinder propulsion, such as sand.

Forested environments also likely impose several

functional challenges for small, arboreal vertebrates,

such as different-diameter perches, obstacle-filled path-

ways, and the risk of falling (Cartmill, 1985; Higham

et al., 2001; Elstrott & Irschick, 2004; Spezzano & Jayne,

2004). Changes in perch diameter affect locomotor

performance (Losos & Sinervo, 1989) and hind limb

kinematics (Spezzano & Jayne, 2004) in Anolis species,

while turning angles influence escape behaviour and

performance in arboreal species (Higham et al., 2001).

The relationship between performance, habitat, and

morphology seems evident in these squamates; for

example, the performance of long-legged species seems

to be more affected by perch diameter than that of short-

legged species (Losos & Sinervo, 1989). In contrast, our

previous study of morphological changes in limb and tail

sizes in Tropidurinae species (Kohlsdorf et al., 2001) had

already suggested that this sub-family exhibits modest

differentiation in body proportions, which are mostly

associated with the colonization of forested environ-

ments. In that study, arboreal species were either

classified as ‘trunk species’ or ‘branch species’, and

shorter tails and hind limbs were associated with species

that use branches and large evolutionary rates were

detected between two sister species that move vertically

over large trunks in the Amazonian forest (Kohlsdorf

et al., 2001). In the present study, the Tropidurinae

species were scored according to an increased use of

trunks or branches. Even when the use of these arboreal

surfaces was considered as a continuum, a dichotomy is

evident in forested environments: some species move

almost exclusively on trunks (like Plica plica) and others

spend more than 90% of their time on branches. This

ecological dichotomy seems coupled to the evolution of

two different morphological profiles: species that very

often use branches exhibit narrow foot soles, while the

three species that spend more than 85% of their time on

trunks are the ones that exhibit the longest relative hind

limbs, specifically longer femora.

The disparity between arboreal species using different

microhabitats (trunks or branches) in the Brazilian

forests is likely related to the contrasting biomechanical

demands involved in each type of locomotion. In one

case, narrow foot soles may influence gripping ability and

decrease the risk of falling from thin branches. Also,

shorter tendons (given by short foot soles) might increase

the ability to control length changes resulting from

tendon compression (Rack & Ross, 1984; Ker et al., 1988),

which may improve control when dealing with the

frequent shifts in substrate incline and diameter imposed

by structurally complex forested habitats. Several

additional morphological adaptations that may improve

arboreal locomotion have been described in squamates.

For example, increased digital lamellae (Glossip & Losos,

1997) and larger toepads (Irschick et al., 1996; Elstrott &

Irschick, 2004; Irschick et al., 2005) seem to improve

climbing performance in anoles, and toe-clipping reduces

clinging performance in Anolis carolinensis (Bloch &

Irschick, 2005). Moreover, the size and shape of the tips

of geckos’ foot hair are directly related to their stickiness

capacity (Autumn et al., 2000). In contrast, Tropidurinae

species that grip on vertical surfaces with large diameters,

such as trunks, may have their performance improved

by longer limbs. Arboreal squamates moving up inclined

or vertical surfaces tend to maintain their trunk close

and parallel to the substrate by flexing the forearms in a

very spread posture (Jayne & Irschick, 1999; Zaaf et al.,

1999), and some species, including geckos (Zaaf et al.,

2001) and lacertids (Russell & Bels, 2001), exhibit a brief

swing phase during climbing and other speed-modu-

lation strategies during vertical climbing to ensure

accuracy of fore and hind limb positioning (Zaaf et al.,

2001).

In addition to changes in limb and foot morphology

observed in association with an increased use of sandy,

rocky or forested environments, it is also possible that

species in this sub-family evolved physiological, behavio-

ural or kinematic adaptations that improve locomotor

performance along the continuum of ecological settings

colonized by Tropidurinae lineages. For example, in

phrynosomatid species, high sprint speeds of the sand

lizard clade can be explained, in part, by variation in

muscle fiber-type composition (Bonine et al., 2001,

2005). It has also been observed that humans adjust

their leg stiffness when changing from sand to hard

surfaces, in order to minimize oscillation of the centre of

mass, with considerable energetic economy (Ferris et al.,

1999). Squamates are distinct from other vertebrates in

relation to trunk lateral bending and support of centre of

mass by legs (Avery et al., 1987; Ritter, 1992, 1995), but it

is also known that some species exhibit kinematic

adjustments to increase sprint speed (Irschick & Jayne,

1998; Jayne & Irschick, 1999; Vanhooydonck et al.,

2002), improve jumping capacity (Toro et al., 2003), and

to cope with differences in the complexity of their

structural habitats (Kohlsdorf & Biewener, 2006). It is

also known that squamate species from different habitats

exhibit behavioural differences, related to the propensity

of performing specific locomotor activities (Bulova, 1994;

Irschick & Jayne, 1998; Jayne & Irschick, 2000), which

has been described even in specific species of tropidurines

(Kohlsdorf et al., 2004; Kohlsdorf & Navas, 2007). Future
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investigations of adaptive changes during the coloniza-

tion of different ecological settings by Tropidurinae

species might include integrating new data on physiology

and behaviour with the morphological study described in

the present work, in order to investigate how multiple

traits, which likely affect performance in a given envi-

ronment, evolve in a correlated fashion (Garland &

Losos, 1994; Irschick & Garland, 2001).
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