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Abstract.—Much ecological and evolutionary theory predicts that interspecific interactions often drive phenotypic
diversification and that species phenotypes in turn influence species interactions. Several phylogenetic comparative methods
have been developed to assess the importance of such processes in nature; however, the statistical properties of these
methods have gone largely untested. Focusing mainly on scenarios of competition between closely-related species, we
assess the performance of available comparative approaches for analyzing the interplay between interspecific interactions
and species phenotypes. We find that many currently used statistical methods often fail to detect the impact of interspecific
interactions on trait evolution, that sister-taxa analyses are particularly unreliable in general, and that recently developed
process-based models have more satisfactory statistical properties. Methods for detecting predictors of species interactions
are generally more reliable than methods for detecting character displacement. In weighing the strengths and weaknesses
of different approaches, we hope to provide a clear guide for empiricists testing hypotheses about the reciprocal effect of
interspecific interactions and species phenotypes and to inspire further development of process-based models. [Character
displacement; competition; interspecific interactions; phylogenetic comparative methods; trait evolution.]

Interactions between species are a fundamental aspect
of life on earth, and understanding the evolutionary and
ecological consequences of such interactions are a central
goal of many classical theoretical frameworks in ecology
and evolutionary biology. Identifying both the predict-
ors of interspecific interactions and the consequences of
such interactions for diversification and coexistence is
thus an important contemporary research area (Weber
et al. 2017), with strong implications for conservation
biology.

Several phylogenetic comparative methods have been
deployed with the goal of elucidating how interspecific
interactions drive (or are driven by) character evolution,
but the reliability and efficacy of these methods remain
largely untested. Here, we focus on methods used to
study interactions between closely related species (e.g.,
members of the same family) that arise from similarity
in morphology, signaling traits, or habitat (Brown
and Wilson 1956; Schluter 2000; Pfennig and Pfennig
2009), rather than on community-wide interactions and
interaction networks (Webb et al. 2002; Rezende et al.
2007; Cavender-Bares et al. 2009; Cadotte et al. 2013).

Classical character displacement theory (Brown and
Wilson 1956; Grether et al. 2009; Pfennig and Pfennig
2009) predicts that, where heterospecifics compete, selec-
tion should favor divergence in the traits responsible
for competition, until lineages in sympatry no longer
compete intensely. In a seminal example, selection result-
ing from exploitative competition between medium and
large ground finches (Geospiza fortis and G. magnirostris)
has driven bill size divergence on Daphne Major in
the Galápagos (Grant and Grant 2006). Investigators
who conduct comparative studies of divergent character

displacement often test the prediction that coexisting
species will be more phenotypically divergent than
noncoexisting ones by looking for a relationship between
biogeographic overlap and trait dissimilarity. Recent
studies on Bicyclus butterflies and Euglossa bees, for
example, show that male chemical cues are more dis-
tinct between sympatric species than allopatric species,
suggesting that reproductive character displacement has
driven signal divergence in these taxa (Bacquet et al. 2015;
Weber et al. 2016).

Interspecific interactions can also lead to convergent,
rather than divergent, character displacement (Cody
1969, 1973; Grant 1972; Grether et al. 2013). Agonistic
character displacement theory (Grether et al. 2013)
predicts convergence in traits mediating interspecific
aggression when species compete strongly for the same
resources. In other words, between-species similarity
in resource use may make interspecific territoriality
adaptive, resulting in subsequent convergence in signal-
ing traits involved in mediating territorial interactions
(e.g., song in ovenbirds, Tobias et al. 2014). Therefore,
tests of convergent character displacement typically
test the prediction that sympatric lineages are more
phenotypically similar than allopatric ones. Because
sympatric similarity can also result from convergence
to local conditions (e.g., habitat, climate), it is important
for empiricists to account for abiotic factors in tests of
character convergence.

In some instances, rather than identifying the effect
of species interactions on trait evolution, empiricists
aim to identify traits that mediate particular pairwise
interactions, such as hybridization or interspecific
aggression. In this case, investigators test for a
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relationship between the measured interactions and
trait similarity. Recent studies on New World warblers
(Parulidae), for example, show that hybridization occurs
more often between species with similar songs and that
interspecific territoriality occurs more often between
species that share similar plumage and territorial song
phenotypes (Willis et al. 2014; Losin et al. 2016).

Although the examples presented here largely
represent scenarios where interactions between species
are competitive, empiricists apply methods discussed
here to other noncompetitive interactions as well (e.g.,
predicting links in plant/pollinator networks and
identifying Müllerian mimicry rings: Elias et al. 2008;
Eklöf and Stouffer 2016). Regardless of the biological
question, a particularity of comparative tests aimed
at understanding the interplay between interspecific
interactions and species phenotypes is that they largely
involve testing correlations between pairwise data (e.g.,
range overlap, phenotypic similarity, and frequency
of hybridization). In contrast, most phylogenetic
comparative methods have been developed and tested on
tip data (e.g., range size and morphological trait values),
and the statistical properties of methods adapted to
handle pairwise data (Appendix 1) have gone untested
(but see Harmon and Glor 2010). Furthermore, species
interactions are inherently affected by the biogeographic
history of dispersal and speciation in an evolving clade
and the resulting patterns of range overlap. Patterns
of trait dissimilarity between sympatric lineages—the
classic test of character displacement—may actually
be the null expectation if allopatric speciation is the
norm, because then sympatric species pairs will tend to
be more distantly related than allopatric species pairs
(Weir and Price 2011; Tobias et al. 2014).

Here, we apply the main phylogenetic comparat-
ive methods that investigators use to test hypotheses
about interactions between closely related lineages and
phenotypes (Appendix 1, Fig. 1) to data sets simulated
under different evolutionary histories of speciation,
dispersal, species interactions, and trait evolution. We
then compare the efficacy of these methods, discuss the
relative merits of each, and outline directions for future
research.

METHODS
We compared the performance of different phylogen-

etic comparative methods by measuring their statistical
power (e.g., probability of detecting divergence when
divergence is simulated) and Type I error rate (e.g.,
probability of detecting an effect of species interactions
when such an effect is not simulated) across three
scenarios.

Phylogeny and Range Simulations
We jointly simulated trees {# spp. = 20, 50, 100, 150, 200,

250} and biogeographies under the dispersal-extinction-
cladogenesis model of biogeographical evolution (i.e.,

DEC+J, with the inclusion of founder event speciation)
in BioGeoBEARS (Ree and Smith 2008; Matzke 2014).
Briefly, the DEC+J model is a model of range evolution
in which species ranges change along the branches of a
phylogeny as a function of dispersal and local extinction
and are inherited by daughter taxa at speciation accord-
ing to several possible cladogenetic scenarios (see more
details in Supplementary Methods available on Dryad at
http://dx.doi.org/10.5061/dryad.ch0vn). For each tree,
we started with a single ancestral species occupying
one of ten equidistant regions, and simulated trees with
constant rates of speciation and local extinction. We
considered different biogeographic scenarios by varying
the rate of dispersal events between ranges (“high” and
“low” dispersal; see details in Supplementary Methods
available on Dryad) and the probability that speciation
events occur in sympatry versus allopatry (“high” and
“low” sympatric speciation; Supplementary Methods
available on Dryad). Each of these simulations resulted
in a phylogeny (the tree of extant species) and its
associated biogeography (the set of regions in which
each lineage occurred throughout the history of the
clade). Lineages were identified as sympatric if they co-
occurred in at least one of the ten geographic regions,
and allopatric if they did not co-occur in any.

We simulated four biogeographic scenarios (com-
binations of low or high dispersal and low or high
sympatric speciation) for each tree size. The resulting
biogeographies span scenarios where sympatric speci-
ation is common and dispersal is low (e.g., lizards on
islands) to scenarios where allopatric speciation is the
main mode of speciation and dispersal between regions
is high (e.g., birds on continents). These parameter
combinations produced a range of realistic proportions
of sister taxa that are sympatric (Supplementary Fig. S1A
available on Dryad) and a range of realistic differences in
age between sympatric and allopatric sister taxa (Pigot
and Tobias 2014; Supplementary Fig. S1B available on
Dryad), at least for animal taxa (but see Anacker and
Strauss 2014 for different patterns in plants). In defining
sympatry as any overlap, the mean magnitude of range
overlap fell between 33% and 42% across all tree sizes
and simulation parameters (Supplementary Fig. S1C,D
available on Dryad), which falls well within the range
of overlap of sympatric taxa defined under commonly
used minimum threshold values applied to continuous
indices of range overlap (e.g., Pigot and Tobias 2014;
Tobias et al. 2014).

For each combination of tree sizes and DEC parameter
combinations (n=24), we performed 100 simulations,
resulting in a bank of 2400 trees with associated
biogeographies.

Character Displacement
The model.—To simulate both divergent and conver-

gent character displacement, we simulated a continuous
trait z under a model in which trait values of sympatric
species in an evolving clade are repelled from (or
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a) b)

c) d)

FIGURE 1. Schematic examples of the processes examined in our simulation study. a) Phylogeny along which the trait evolves, b) a trait
evolving via divergent character displacement, c) a trait evolving via convergent character displacement, and d) a species interaction that exists
at present due to pairwise trait similarity. For simulation details, see the main text and Supplementary Methods of the Supplementary Material
available on Dryad.

drawn toward) one another. In divergent character
displacement, trait divergence is driven by pairwise
similarity in that same trait z; in convergent character
displacement however, convergence in trait z (e.g., a
signaling trait) is driven by pairwise similarity in another
trait y (e.g., a resource use trait). To create a generic
model of character displacement, we thus modified
the matching competition (MC) model (Nuismer and
Harmon 2015; Drury et al. 2016) by describing the mean
value for trait z in lineage i after an infinitesimally small
time step dt by:

zi(t+dt)=zi(t)+�(�−zi(t))dt+m⎡
⎣

n∑
j �=i

Ai,j ×sign(zi(t)−zj(t))×e−�(yj(t)−yi(t))2

⎤
⎦dt+�

(1)

where y=z in the case of divergent character displace-
ment and y �=z in the case of convergent character
displacement, �(�−zi(t)) describes attraction to a single
stationary peak [i.e., the Ornstein–Uhlenbeck (OU)
process, Felsenstein 1988; Garland et al. 1993; Hansen
and Martins 1996], n is the number of species, � is a
random variable with mean 0, and variance =�2dt [the
Brownian motion (BM) rate parameter, describing the
stochastic component of trait evolution], and A is a
piecewise-constant matrix representing biogeographical
overlap such that Ai,j equals 1 if species i and j are
sympatric at time t, and 0 otherwise. The “sign” portion
determines the relative position of each species in trait
space (i.e., it equals +1 if zi is larger than zj, and −1
otherwise). The � value (� >0) determines the effect of

pairwise similarity in trait y on competition: if� is close to
zero, all lineages sympatric with lineage i have the same
competitive effect on i, regardless of their similarity in
trait y; conversely, if � is large, sympatric lineages similar
to i in terms of the y trait will have a much stronger
competitive effect on i than sympatric lineages dissimilar
to i in terms of the y trait. The parameter m represents
the magnitude of the effect of competition when two
lineages have identical y values (i.e., it provides an
upper bound for the deterministic effect of competition).
When m=0, this equation reduces to an OU model,
whereas positive m values result in pairwise divergence
and negative values result in pairwise convergence.
When both m and �=0, this model reduces to BM.
For additional simulation details, see Supplementary
Methods available on Dryad.

We use a lineage-based “phenomenological” model
for our simulations rather than an individual-based
model to have the computational ability to produce data
sets of a size comparable to the maximum sometimes
reached in empirical comparative phylogenetic stud-
ies (i.e., often reaching several hundreds of species).
Models derived from microevolutionary first principles
(e.g., Grether et al. 2009; Nuismer and Harmon 2015)
generate similar patterns of sympatric shifts resulting
from character displacement, and using such a model
here would be much more computationally intensive,
therefore restricting the range of parameter values that
can be studied. For simplicity, this model also omits the
effect of a species’ geographic structure and the effect of
gene flow between distinct populations on the evolution
of the mean species phenotype. This simplification is
reasonable in the context of our study because there is
no reason to expect that it will systematically bias the
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patterns generated in such a way as to yield different
conclusions regarding the performance of the various
analytical approaches that we use here. Finally, in all
of our simulations, we considered sympatry to be a
binomial variable, so Ai,j equaled either 1 (if species i
and j are sympatric) or 0 (if species i and j are allopatric).
This index of sympatry is similar to commonly used
indices (Pigot and Tobias 2014; Tobias et al. 2014), but
other formulations of sympatry, such as continuous
measurements of range overlap (Bothwell et al. 2015;
Martin et al. 2015) are also possible. We did not explore
continuous measurements of range overlap here, but
have uploaded our simulation scripts to RPANDA
(Morlon et al. 2016; https://github.com/hmorlon/
PANDA), which could easily be modified to do so.

Divergent character displacement.—We simulated data
sets with divergent character displacement by setting y =
z in Eq. 1 such that trait divergence is driven by pairwise
similarity in that trait. Biologically, this could represent
a feeding trait that covaries with resource use (e.g., bill
shape in Galápagos finches, Grant and Grant 2011) and
which would directly affect interspecific competition.
To assess whether each method could detect divergent
character displacement when it occurred and did not
erroneously detect character displacement when it was
absent, we simulated data sets both with repulsion {m=
2} and without repulsion {m=0} (see Supplementary
Methods available on Dryad). We also simulated data
sets with {�=2} and without {�=0} the OU process. In
all simulations, we held �2 constant at 0.5, � constant at
1, and both the state at the root (z0) and the OU optimum
(�) constant at 0.

In additional simulations run only on 100-species
trees, we analyzed the effect of both the maximum
strength of repulsion {m=0, 1, 2, 10} and, to understand
how the opposing forces of repulsion and attraction to
an optimum influence analyses, the ratio of attraction
to the maximum effect of competition {�:m=0, 0.2,
0.5, 1}. To achieve these ratios of �:m, we varied �
while holding m constant (e.g., for the case where
m=2, we simulated data sets where �=0, 0.4, 1, and
2, respectively). As above, these values were arbit-
rarily chosen based on visual inspection of realized
simulations.

For each parameter combination, we simulated 10 data
sets for each tree, resulting in 1000 simulations for each
tree size/biogeographic scenario combination.

Convergent character displacement.—We simulated data
sets with convergent character displacement under
Eq. 1, where the term y represents a trait determining
resource use or niche occupation evolving via BM or
OU. A species’ trait z in this model—a trait used as
a territorial signal—is thus attracted most strongly
to the signal trait values of sympatric lineages with
the most similar resource-use traits. Biologically, this
represents a scenario where selection favors interspecific
territoriality—mediated by similarity in territorial
signals—because the benefits of excluding heterospecif-
ics are similar to the benefits of excluding conspecifics

(Grether et al. 2009). As a species’ resource-use trait
becomes less similar to that of sympatric species, the
strength of attraction decreases to zero.

We simulated resource-use traits under both BM
(�2

resource =0.5, �resource =0) and OU (�2
resource =0.5,

�resource =2, �resource =0) models. For the signal trait, we
simulated data sets both with convergence {m=−0.25}
and without convergence {m=0}. We did not include
attraction toward a stable peak for the signal trait (i.e.,
� was held constant at 0). As above, we held �2 =
0.5 and z0 =0, though we held � constant at 10, since
smaller values result in rapid, cladewise convergence in
traits. To analyze the effect of the maximum strength
of convergence, we ran another set of simulations on
100-species trees varying m {m=0, −0.1, −0.25, −0.5}
(see Supplementary Methods available on Dryad). The
resource trait (y) and signal trait (z) were modeled as
unlinked and genetically uncorrelated.

As above, we simulated 10 data sets for each
tree, resulting in 1000 simulations for each tree
size/biogeographic scenario combination.

Predictors of Interspecific Interactions
In some cases, investigators wish to identify which

factors explain the occurrence of particular interspecific
interactions. For example, investigators may want to
understand which traits cause species to hybridize (e.g.,
Willis et al. 2014). In this scenario, species interac-
tions vary according to phenotypic similarity between
sympatric species pairs (i.e., species pairs that could
potentially interact). Additionally, and unlike character
displacement analyses, predicting the occurrence of
interspecific interactions requires treating trait similarity
as a predictor variable rather than a response variable.
Thus, we generated data sets where the presence of inter-
actions between sympatric taxa depends on pairwise
similarity in traits.

First, we simulated the independent evolution of two
traits along the phylogeny. One of these traits (Trait
1) represents the measured, focal trait: the investigator
wants to know if this trait (e.g., plumage color) affects
interactions (e.g., hybridization). The other trait (Trait
2) represents an uncorrelated trait (e.g., song) that
potentially also affects interactions but is not the focal
trait, and is not necessarily measured. We simulated this
second trait in order to check whether the effect of a
nonfocal trait on interactions could be misinterpreted as
the effect of the focal trait (a sort of Type I error) and
also to determine how the effect of an unmeasured trait
on interactions affects the ability to identify an effect
due to the measured trait. We evolved Trait 1 under
a BM (�2 =0.5, �=0) or OU (�2 =0.5, � =2, �=0)
model and Trait 2 under a BM model (�2

unmeasured =1,
�unmeasured =0).

Next, we generated data sets where the probability P
for two species to interact depends on similarity in trait
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space at the present:

P= e(b1D+b2D2)

1+e(b1D1+b2D2)
(2)

(e.g., Hilbe 2009) where Dn is the trait distance between
species (i.e., distance between tip values) in simulated
trait n (simulated using fastBM in phytools, Revell 2012),
and bn is the coefficient determining the magnitude
of the relationship between the species interaction and
similarity in trait n. As the effect of bn on species
interaction depends on Dn, which in turn depends on the
total height of the tree, we scaled the trees to a height of
one prior to simulating data sets to facilitate comparison
of results across trees and parameter space.

To determine the power to identify an effect of trait
similarity on interactions, we generated species interac-
tions based on similarity in the focal trait (b1 =−4, b2 =0).
To assess the Type I error rate, we simulated species
interactions based on similarity in the nonfocal trait
(b1 =0, b2 = −4). It is also possible that both the focal trait
and an unmeasured trait influence species interactions.
To determine how the effect of an unmeasured trait on
interactions affects the ability to identify an effect due to
the measured trait, we ran another set of simulations on
100-species trees varying b1 {b1 =0, −2, −4, −6, −8} and
holding b2 =−4. As above, we ran 1000 simulations for
each tree size/biogeographic scenario combination.

Phylogenetic Tests
Among our tests of character displacement (both

divergent and convergent), the “correlation” tests
involved assessing the significance of the relationship
between phenotypic similarity and coexistence, using
either the “full” data set (all species pairs) or the “sister
taxa” subset obtained by culling sister taxa from trees
with �150 tips (Appendix 1, Diagram S1). To the full data
sets, we applied standard nonphylogenetic regression
analyses that ignore phylogenetic nonindependence
(Appendix 1), the raw and phylogenetically permuted
partial Mantel tests (Appendix 1), phylogenetic linear
mixed models (PLMMs, Appendix 1), and the simula-
tion approach (Appendix 1, Supplementary Methods
available on Dryad). To the sister-taxa data sets, we
applied nonphylogenetic regression analyses (Appendix
1), PLMMs (Appendix 1), the simulation approach
(Appendix 1), sister-taxa GLMs (Appendix 1), and fit
process based models in EvoRAG (Appendix 1, Sup-
plementary Methods available on Dryad). We did not
perform Mantel tests on the sister-taxa data because such
tests require complete matrices and distance matrices
with data for only sister taxa would mostly contain
empty cells (i.e., all those cells that correspond to
nonsister taxa species pairs). We compared the fit of
process-based phenotypic models with and without spe-
cies interactions (BM, OU, diversity dependent, and MC
models; see Appendix 1 and Supplementary Methods
available on Dryad) to the full data sets from divergence
scenarios using the R packages geiger (Pennell et al.

2014) and RPANDA (Morlon et al. 2016). We acknowledge
that diversity-dependent models were not designed to
analyze character displacement per se, but because they
incorporate interspecific interactions, we hypothesized
that (and wanted to test if) they could be useful in
doing so. We did not apply process-based models to
convergence scenarios because the necessary model
fitting tools have yet to be developed (see Discussion).

Our tests of predictors of species interactions involved
assessing the significance of the relationship between
phenotypic similarity and species interactions (i.e.,
whether the species interact where they occur in sym-
patry). Since the response variable is binary, we fit
nonphylogenetic logistic regressions, logistic PLMMs,
and employed the simulation approach (see Supple-
mentary Methods available on Dryad). We did not
perform Mantel tests or sister-taxa analyses because the
species pair matrix was incomplete (species that do not
coexist cannot interact) and typically too few sister taxa
occurred in sympatry for regression analysis.

RESULTS

Divergent Character Displacement
When all possible pairwise comparisons are included

in analyses, the ability of most methods to detect
divergent character displacement in simulated data sets
depends on the presence of the OU process. As expected,
nonphylogenetic regression analyses have high Type
I error rates [Fig. 2Ai,iv, Supplementary Fig. S2Ai,iv
available on Dryad (NB: throughout, results for low
sympatric speciation biogeographies are plotted in the
main text and high sympatric speciation biogeographies
in the supplement)]. When the OU process is present
(�=2), all phylogenetic methods generally have low
Type I error rates and high power (Fig. 2Aiv–vi,
Supplementary Fig. S2iv–vi and Tables available on
Dryad). However, when there is no pull toward a
peak (�=0), the Type I error rate is higher for Mantel
tests (Fig. 2Ai,ii, Supplementary Fig. S2i,ii available on
Dryad), and the power is much lower for all methods,
though the pppMantel and raw Mantel perform better
than the simulation and PLMM methods (Fig. 2Aiii,
Supplementary Fig. S2iii available on Dryad). Repulsion
is easier to detect against an OU background of traits
converging toward a common optimum than against a
background of traits diverging under BM, likely because
the repulsion process is more active when species occupy
similar trait space (Supplementary Figs. S3 and S4
available on Dryad). High rates of sympatric speciation
and dispersal tend to slightly decrease the power of
all methods (Supplementary Fig. S2iii,vi and Tables
available on Dryad).

The ability to detect divergence was relatively similar
for m=1 and m=2, but declined for m=10 (Supplement-
ary Fig. S5 available on Dryad). This is due to a positive
relationship between the ability to detect character
displacement and the ratio of �:m (Supplementary Fig.
S6 available on Dryad), resulting from a higher absolute
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function of the number of sister taxa comparisons and dispersal rate when (i–ii) m =0 and �=0 [(i) all analyses and (ii) only analyses returning
divergence in sympatry], (iii) m=2 and �=0, (iv–v) m=0 and �=2 [(iv) all analyses and (v) only analyses returning divergence in sympatry],
and (vi) m=2 and�=2. For scenarios where m=2, only the proportion of significant results showing divergence are plotted. Dashed horizontal
lines represent a Type I error rate of 5%.
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magnitude of repulsion when both processes are present
(Supplementary Figs. S4 and S6 available on Dryad),
indicating that this ratio impacts the ability to detect
divergence more than the raw value of m.

For several analyses using only sister-taxa comparis-
ons, there is a high probability of falsely concluding that
character displacement occurred in data sets simulated
under BM and, to a lesser extent, OU, when data are
analyzed with simple linear regressions or PLMMs (Fig.
2Bi,iv, Supplementary Fig. S2Bi,iv available on Dryad).
As with the whole-tree approach, the power tends to
increase and Type I error rate tends to decrease in
data sets with attraction toward a single-stationary peak
(Fig. 2Biv–vi, Supplementary Fig. S2Biv–vi available
on Dryad). However, the overall power to infer the
presence of divergence was low (<0.8) with analyses
conducted on sister taxa (Fig. 2Biii,vi, Supplementary
Fig. S2Biii,vi available on Dryad, Table 2), regardless of
the analytical approach used. Inferences were generally
better when dispersal was high, which may reflect
the elevated observed divergence in high-dispersal
scenarios (Supplementary Fig. S3 available on Dryad).
Allopatric speciation increased the probability of Type I
error (e.g., Fig. 2Bi–ii).

For the phylogenetic trait model-fitting analyses, BM
and OU were generally correctly chosen when they
were the generating models (i.e., when m=0 and when
�=0 or 2, respectively, Fig. 3, Supplementary Fig. S8
available on Dryad). When � =0 and m >0, the MC
model with biogeography is consistently the best-fit
model (Fig. 3A, Supplementary Fig. S8A available on
Dryad). When m >0 and �=2, the diversity dependent
exponential (DDexp) model with biogeography was
favored over other models in most scenarios (Fig. 3B,
Supplementary Fig. S8B available on Dryad), with
positive rate parameters estimated in the maximum
likelihood solution (Supplementary Fig. S9 available
on Dryad). The biogeographic scenario did not greatly
affect the outcome of model fitting, though correct
models were slightly more supported when dispersal
was high (Supplementary Fig. S10 available on Dryad),
in agreement with the observed magnitude of repulsion
(Supplementary Fig. S3 available on Dryad). Although
the models are less identifiable when m=10 and �=2
(Fig. 3, Supplementary Fig. S8 available on Dryad), this
results from variation in the�:m ratio—there is a ratio of
�:m around which these models cannot be distinguished
(Supplementary Fig. S11 available on Dryad).

Process-based models fit to sister-taxa data sets in
EvoRAG did not mistakenly identify an effect of species
interactions when they were absent (Supplementary
Fig. S4A available on Dryad, C, Table 2), but they
were unable to identify the effect of competition when
�=0 (Supplementary Fig. S4B available on Dryad,
Table 2). However, as with process-based models fit to
the whole phylogeny, when data were simulated with
both repulsion and a pull toward a stable peak, a model
where evolutionary rates vary linearly with the number
of sympatric taxa is often the best-fit model, though
generally with only a marginally lower AICc value (i.e.,

�AICc <2) than BM (Supplementary Fig. S4 available on
Dryad, Table 2).

Convergent Character Displacement
As with divergent character displacement, with all

pairwise species combinations, the ability of most
methods to detect convergent character displacement
depends on the presence of the OU process on the
resource-use trait: data sets simulated with convergent
character displacement and an OU pull on resource-
use traits were more likely to be statistically significant
(Fig. 4A.vi, Supplementary Fig. S12A.vi available on
Dryad) across all methods than those simulated with
convergent character displacement and no OU pull
on resource-use traits (Fig. 4A.iii, Supplementary Fig.
S12A.iii available on Dryad). Again, this is likely because
the presence of the OU process in the resource-use
trait amplifies the magnitude of convergence (Sup-
plementary Figs. S13 and S14 available on Dryad).
Overall, however, only the simulation approach had
substantial power (>0.80) to detect convergent character
displacement (Table 1), and only in trees with 100 or more
tips and data sets with the OU process in the simulated
resource-use trait. Indeed, the nonphylogenetic regres-
sions often (spuriously) detected divergence rather than
the simulated convergence, especially in smaller trees
(Fig. 4Ai vs. Aii, Supplementary Fig. S12Aiv,ii and Tables
available on Dryad). Both types of Mantel tests were
unable to detect convergence, in fact having a higher
Type I error rate (detecting divergence in BM simulated
data sets, Supplementary Tables available on Dryad)
than power. As with divergent character displacement,
there was a tendency for higher power in lower dispersal
scenarios.

The power to detect convergence generally increased
with increasingly negative values of m, the maximum
strength of attraction in the signal trait when species
are identical in the resource-use trait (Supplementary
Fig. S15 available on Dryad), though as m gets large,
the probability that all species converge on the same
trait value increases, especially when �resource =2 (see
Supplementary Methods available on Dryad).

Regardless of whether resource-use traits are simu-
lated under OU or BM, when there is no convergence,
nonphylogenetic regressions and PLMMs used for ana-
lyses of sister taxa data sets tend to have high Type
I error rates, though these analyses return an erro-
neous inference of divergence, rather than convergence,
between sister taxa (Fig. 4Bi,ii,iv,v, Supplementary Fig.
S12Bi,ii,iv,v available on Dryad, Table 2, Supplementary
Tables available on Dryad). Sister-taxa analyses had
overall very low power (<0.6) to detect convergence
when it did exist, and nonphylogenetic regressions
often detected divergence, rather than convergence
(Table 2, Supplementary Tables available on Dryad).
As with divergent character displacement simulations,
the allopatric speciation biogeographic scenarios were
more likely to lead to higher Type I error rates (Fig.
4Bi,iv). Process-based models fit to sister-taxa data sets
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a)

b)

FIGURE 3. Boxplots of Akaike weights for each trait model fit to simulated data sets in biogeographic scenarios with low sympatric
speciation rates as a function of m in trees with 100 species. a) When OU is absent, BM is the best-fit model when m=0, and the MC model with
biogeography is the best model when competitive divergence is present. b) When OU is present, OU is the best-fit model when m=0, and the
diversity-dependent exponential model with biogeography is the best model when competitive divergence is present and�:m is relatively high.

in EvoRAG did not erroneously detect divergence or
convergence (i.e., BM was the best-fit model when m=0,
Supplementary Fig. S14A,C available on Dryad, Table 2),
but they could not detect an effect of species interactions
when convergence was present, at least for the number
of sister taxa in this study, as OU was the best-fit model
when m=−0.25 (Supplementary Fig. S14B,C available
on Dryad, Table 2).

Predicting Interspecific Interactions
Although all three methods used to identify traits

that are causally related to interspecific interactions
had high power (�0.8, Table 1, Supplementary Tables
available on Dryad) to do so in the parameter space
explored here (Fig. 5ii,iv, Supplementary Fig. S16ii,iv
available on Dryad), only the simulation approach had
both high power and a low Type I error rate (Table 1),
whereas nonphylogenetic regressions and PLMMs had
fairly high Type I error rates (Table 1) when interactions
were simulated based on similarity in a trait other than
the measured one (Fig. 5i,iii, Supplementary Fig. S16i,iii
available on Dryad). The power to detect an effect of
trait similarity on species interactions was not greatly
affected by the presence of an additional, unmeasured
trait that also affected the interaction (Supplementary
Fig. S17 available on Dryad). Biogeography did not
have a large impact on analyses, though there were

slightly higher Type I error in low-dispersal scenarios
(Fig. 5i,iii).

DISCUSSION
As open-access databases with species range, trait,

and phylogenetic data rapidly expand, investigators are
able to test hypotheses about the relationships between
interspecific interactions and phenotypic evolution at
an unprecedented scale. Understanding the relative
strengths and weaknesses of phylogenetic comparat-
ive methods available for testing such hypotheses is
thus paramount. We found that many currently used
methods for detecting causal relationships between
interspecific interactions and species phenotypes suffer
from severe limitations (Tables 1,2).

Overall, standard methods are better at detecting
divergent character displacement when divergence does
not drive unbounded trait evolution (i.e., when selection
acts against extreme phenotypes, as can be modeled
by the OU process). Consistent with previous reports
(Harmon and Glor 2010; Guillot and Rousset 2013), Man-
tel tests had high Type I error rates and both standard
and pppMantel tests have low power (Table 1, Fig. 2Ai,
Supplementary Fig. S2Ai available on Dryad). We found
that several analytical tools used on sister-taxa data sets
have high Type I error rates (Table 2, Figs. 2Bi,iv, 4Bi,iv,
Supplementary Figs. S2Bi,iv, S12Bi,iv, Tables available on
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FIGURE 4. Proportion of statistically significant analyses in data sets simulated under convergent character displacement in biogeographic
scenarios with low sympatric speciation rates. a) Results from approaches using data from all pairwise comparisons in a clade, plotted as a
function of the phylogeny size and dispersal rate when (i–ii) m=0 and�resource =0 [(i) all analyses and (ii) only analyses returning convergence in
sympatry], (iii) m=−0.25 and�resource =0, (iv–v)m=0 and�resource =2 (iv) all analyses and v. only analyses returning convergence in sympatry),
and (vi) m=−0.25 and �resource =2. b) Results from analyses of sister-taxa culled from complete phylogenies binned by the number of resulting
species pairs, plotted as a function of the number of sister taxa comparisons and dispersal rate when (i–ii) m=0 and �resource =0 [(i) all analyses
and (ii) only analyses returning convergence in sympatry], (iii) m=−0.25 and �resource =0, (iv–v) m =0 and �resource =2 [(iv) all analyses and (v)
only analyses returning convergence in sympatry], and (vi) m=−0.25 and �resource =2. For scenarios where m=−0.25, only the proportion of
significant results showing convergence are plotted. Dashed horizontal lines represent a Type I error rate of 5%.
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TABLE 1. Summary of the statistical properties of the analytical approaches tested under scenarios using data from all tips (i.e., with
sister-taxa analyses excluded)

Analysis
Nonphylogenetic
regression

Mantel test pppMantel test PLMM Simulation test Process-based
models

Type I Power Type I Power Type I Power Type I Power Type I Power Type I* Power†

Divergent char.
displacement

0.37–0.61 0.51–1 0.05–0.10 0.28–1 0.04–0.06 0.20–1 0.05–0.06 0.12–1 0.05–0.07 0.07–1 0.01–0.04 0.92–0.93

Convergent char.
displacement

0.40–0.60 0.31–0.99 0.08–0.09 0–0.02 0.05–0.06 0–0.01 0.05–0.07 0.07–0.26 0.04–0.05 0.12–0.91 — —

Predicting spp.
interactions

0.08–0.3 1 — — — — 0.07–0.18 1 0.03–0.04 1 — —

Notes: Values refer to the range of average type I error rates and power levels for each tree size �50 across biogeographic scenarios and scenarios
where �or �resource =0 or 2. Power refers to only those statistically significant tests in the appropriate tail (i.e., in the lower tail for divergent
character displacement and upper tail for convergent character displacement). For each analytical scenario, the cell with the method with the
best trade-off between Type I error and power is shaded.
*Type I error rate calculated as the proportion of data sets simulated without divergent character displacement for which a model that includes
species interactions—DDexp, DDlin, or MC—was chosen by model selection (i.e., for which �AICc =0 and �AICc for all other models >2).
†Power calculated as the proportion of data sets simulated with divergent character displacement for which either DDexp, DDlin, or MC was
chosen by model selection.

TABLE 2. Summary of the statistical properties of the analytical approaches tested under scenarios using sister-taxa analyses

Analysis
Non-phylogenetic
regression

Sister-taxa GLM PLMM Simulation test Process-based models
in EvoRAG

Type I Power Type I Power Type I Power Type I Power Type I* Power†

Divergent char.
displacement

0.07–0.42 0.69–0.75 0.05–0.07 0.19–0.32 0.08–0.50 0.69–0.78 0.01–0.03 0.18–0.30 0.04–0.07 0.03–0.37

Convergent char.
displacement

0.33–0.43 0.01–0.2 0.07 0.04–0.06 0.41–0.5 0.02–0.21 0.03 0.01–0.2 0.04 0.09–0.55

Notes: Values refer to the range of type I error rates and power levels, averaged across biogeographic scenarios, and scenarios where � or
�resource =0 or 2. Power refers to only those statistically significant tests in the appropriate tail (i.e., in the upper tail for divergent character
displacement and lower tail for convergent character displacement). Since no method has both low Type-I error rates and high power, we caution
against using sister-taxa approaches to test for character displacement.
*Type I error rate calculated as the proportion of data sets simulated without divergent character displacement for which a model that includes
a linear dependency on the number of sympatric lineages— BMlinear or OUlinear_beta—was chosen by model selection (i.e., for which �AICc =0
and �AICc for all other models >2).
†Power calculated as the proportion of data sets simulated with divergent character displacement for which either BMlinear or OUlinear_beta was
chosen by model selection.

Dryad), which would lead investigators to conclude that
divergent character displacement had occurred when, in
fact, it had not, and no statistical approaches for sister-
taxa analyses have a reasonable combination of Type I
error and power. Given the lack of a method that has
reasonable Type I error rate and power, we discourage
empiricists from using sister-taxa approaches to study
character displacement. If no other data are available
for testing for character displacement on the whole
tree, then we recommend phylogenetic simulations or
sister-taxa GLMS, as they are the only methods with
generally low type I error rates, even though they
suffer from low power (Tables 1 and 2). Moreover, for
analyses conducted with phylogenetic simulations or
sister-taxa GLMs, though at risk of falsely rejecting
the hypothesis of character displacement owing to low
power, empiricists can be fairly confident that positive
signals of character displacement are trustworthy.

Fitting process-based phylogenetic trait models to data
sets simulated with divergent character displacement

yielded more consistent patterns (Fig. 3). Without
attraction toward a single stationary peak to bound trait
evolution, the MC model with biogeography was pre-
dominantly the best-fit model. For data sets simulated
with the OU process, the diversity-dependent exponen-
tial (DDexp, see Appendix 1) model with biogeography
was the best-fit model, and similarly a model with a
linear relationship between evolutionary rates and the
number of sympatric taxa often fit sister-taxa data sets,
though with much lower power overall (Supplementary
Fig S4 available on Dryad, Table 2). In the DDexp model,
rates of trait evolution vary exponentially with the
number of sympatric lineages through time, thereby
incorporating the effect of interspecific interactions on
the rate of trait of evolution but not explicitly modeling
the process of character displacement acting on the
mean trait values. It may nonetheless provide a useful
proxy for detecting patterns that are similar to those
left by character displacement, in the absence of a
process-based model that incorporates both attraction
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FIGURE 5. Proportion of statistically significant analyses in data sets with interactions simulated under a simple phenotype matching process
in biogeographic scenarios with low sympatric speciation rates. Results from analyses where the measured trait was simulated under BM (i, ii)
or OU (iii, iv), plotted as a function of the phylogeny size and dispersal rate when i. b1 (the simulation coefficient determining the relationship
between the interaction and the measured trait) =0, b2 (the simulation coefficient for an unmeasured trait) =−4, and �=2, ii. b1 =−4, b2 =0,
and �=2, iii. b1 =0, b2 =−4, and �=0, and (iv) b1 =−4, b2 =0, and �=0.

toward an optimum trait value and divergent character
displacement. We emphasize, however, that statistical
support for phylogenetic process-based trait models
incorporating interspecific interactions does not in itself
constitute decisive evidence that character displacement
has occurred, as other processes may generate similar
patterns (e.g., increasing evolutionary rates with increas-
ing lineage diversity). Given that the DDexp model is the
best-fit model in parameter space where other methods
also perform well, combined evidence from model-
fitting and other, nonprocess based methods would
constitute a strong case for the presence of character
displacement. In the absence of tip data (e.g., due
to incomplete sampling or traits that are inherently
measured as pairwise properties), process-based models
are unsuitable and we recommend using data from as
many species pairs as possible—not just sister taxa—
and using simulation approaches or PLMMs. In other
words, to detect divergent character displacement, we
recommend that empiricists fit the MC model to their
data set when possible. High support for the MC model
would constitute evidence that character displacement
has acted on a trait. If the MC model does not provide
a good fit for the data, this could be because character

displacement proceeds in the presence of bounded
trait evolution, in which case a signature of the DDexp
model with a positive rate parameter and/or a signature
of sympatric divergence in phylogenetic simulations
or PLMMs would constitute evidence consistent with
divergent character displacement.

Interestingly, even though most previous investigators
have used the DDexp model to represent a decline in
ecological opportunity with increasing species richness
(Mahler et al. 2010; Weir and Mursleen 2013), the
maximum likelihood estimates of the rate parameters
for this model were positive, rather than negative,
when both divergence and the OU process were present
(Supplementary Fig. S9 available on Dryad). This is
consistent with our finding of increasing evolutionary
rates with increasing species richness (Supplementary
Figs. S3, S4 and S7 available on Dryad) in this scenario.
An increase in the rate of evolutionary changes in
trait values toward the present likely results from
selection not only restricting species to certain trait
space but also partitioning that space. The resulting
adaptive landscape is therefore changing rapidly,
causing accelerating evolutionary rates as lineages fill
this increasingly constrained space.
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The MC model (Appendix 1) is similar to the model
used to simulate data (Eq. 1), with the assumption that
� is very small (�1) and consequently, competitive
interactions are affected by the mean trait values of all
sympatric species, rather than by pairwise similarity
(Nuismer and Harmon 2015; Drury et al. 2016).
Biologists, however, generally assume that competition
is stronger between phenotypically similar species
(Brown and Wilson 1956). Our results show that the
assumption of a small � does not render the MC model
useless for studying character displacement, as the MC
model is the best-fit model for many data sets simulated
under the character displacement model used here.
Nevertheless, the finding that the DDexp model is the
best-fit model in data sets simulated under character
displacement including OU indicates that the MC
model is not a perfect model of character displacement.
Recently, approximate Bayesian computational (ABC)
tools have been published to fit a model of character
displacement in which, like in our simulation model,
the strength of competition depends on similarity in
trait space (Clarke et al. 2017). This model provides an
alternative tool for detecting character displacement
in comparative data sets, and we hope that further
development of methods such as this ABC method will
help ameliorate the statistical issues shown here.

For data sets simulated including the OU process,
the ratio of the pull-parameter in the OU portion
of the model to the maximum amount of repulsion
(�:m) had a consistent impact across all methods,
which results from the overall larger magnitude of
evolutionary changes in traits in scenarios with a high
�:m ratio (Supplementary Figs. S3, S4 and S7 available
on Dryad). As �:m approached 1, all methods were
better at detecting character displacement. Currently,
there are no analytical approaches that can disentangle
the simultaneous impact of attraction toward a peak
and divergence due to competition, though we hope
our results will inspire development of such tools. We
also note that the ratio of the BM rate parameter �2 and
m will also likely impact the ability to detect character
displacement, though we have not explored this here.

Unlike for divergent character displacement, available
statistical methods for detecting convergence in compar-
ative data sets generally do a poor job of detecting con-
vergence, with the simulation method outperforming
others (Table 1). With whole-data set approaches, Type
I error rates are acceptable for phylogenetic analyses
(~5%), however, so although detecting convergence is
difficult, the risk of mistakenly detecting convergence
is low. In sister-taxa analyses, although Type I error
rates are high for PLMMs (Table 2), these largely return
erroneous divergence results, rather than erroneous
convergence (Figs. 4Bii,v, Supplementary Fig. S12Bii,v
available on Dryad). In short, if an empiricist detects
convergence in their data set, they can be fairly confident
in the result. Yet if empiricists do not detect convergence,
this could simply be a result of lower power of the
available analytical tools. Currently, there are no tools
to fit phylogenetic trait models of convergence between

species (e.g., Nuismer and Harmon 2015); such tools
might more successfully identify convergent character
displacement in comparative data sets than the available
statistical methods.

For both divergent and convergent character dis-
placement scenarios, we found that sister-taxa GLMs
and the simulation approach applied to sister-taxa data
sets had a mean Type I error rate near 5% (Table 2).
However, in some scenarios, the Type I error for sister-
taxa GLMs was slightly higher than for the simulation
approach (Figs. 2Bi and 4Bi, Supplementary Tables
available on Dryad), which suggests that including a
model-based estimate of the rate of trait evolution more
properly accounts for the effect of divergence than
simply including the branch lengths separating sister
taxa as a covariate in analyses to control for variation in
the amount of time sister taxa have had to diverge from
one another (but see Appendix 1 for other extensions
of sister-taxa GLMs). The high overall Type I error rate
for analyses conducted on sister-taxa data sets may
also result from the unrealistic assumption, common
to all sister-taxa analyses, that transitions between
allopatry and sympatry are uncommon along branches
connecting sister taxa (Weir and Price 2011; Tobias et
al. 2014). Supporting this explanation, we found that
biogeographic scenarios with high levels of sympatric
speciation and low dispersal tended to have overall lower
Type I error rates (cf. Figs. 2, 4, Supplementary Figs. S2
and S12 available on Dryad).

The statistical properties of analyses used for identi-
fying which traits drive species interactions are less
variable than for character displacement scenarios. The
statistical methods available to test for causal relation-
ships between phenotypic similarity and interactions
between species have very high power. The simulation
approach has a low Type I error rate when causal rela-
tionships are simulated based on an unmeasured trait,
although non-phylogenetic regressions and PLMMs
suffer from relatively high Type I error rates (Table
1). Thus, we recommend that empiricists interested
in predicting pairwise species interactions based on
trait data use phylogenetic simulations. While we did
not simulate interactions between clades, our results
are likely applicable to other empirical questions, such
as identifying traits that predict links in ecological
networks (Rafferty and Ives 2013; Hadfield et al. 2014;
Eklöf and Stouffer 2016).

By simulating data sets with various types of interac-
tions between species across different modes of speci-
ation and dispersal rates, we have shown that many of
the methods that investigators use to analyze empirical
data sets have low power to detect such patterns (Table 1).
In particular, widely-used sister taxa analyses, including
standard regressions and, in some scenarios, sister-taxa
GLMs, often detected character displacement in data
sets that were simulated under a simple BM model
(Figs. 2Bi–ii and 4Bi–ii). We therefore urge investigators
to use caution when interpreting the results of such
analyses, even in cases where sympatry is delineated
using other criteria than the one considered here. When
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process-based models could be fit to these data sets, they
tended to correctly identify patterns of divergence (i.e.,
either the MC model or a diversity-dependent model is
the best fit model >92% of the time). Thus, when possible,
empiricists should employ such methods. Statistical
tools to fit process-based models of phenotypic evolution
including species interactions are in their infancy (Drury
et al. 2016; Manceau et al. 2016) and many possible
models are not yet available (e.g., convergent character
displacement, character divergence in the presence of an
adaptive pull towards a peak). We hope that our results
encourage the continued development of such tools.

In closing, we note that divergent character dis-
placement is erroneously detected with many stat-
istical approaches, indicating that there may be an
overrepresentation of empirical studies that imply that
divergence has occurred. In particular, studies that
have used sister-taxa methods to document character
displacement using standard regressions or PLMMs
may have falsely interpreted a null expectation—larger
trait differences between sympatric lineages owing to
allopatric speciation—as evidence for divergent char-
acter displacement. Conversely, convergent character
displacement is often hard to detect with existing meth-
ods, suggesting that convergence in signal traits (e.g.,
Cody 1969, Cody 1973; Pigot and Tobias 2014; Losin et al.
2016) might be more prevalent than previously thought.
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APPENDIX 1. METHODS FOR ASSESSING THE INTERPLAY

BETWEEN INTERSPECIFIC INTERACTIONS AND SPECIES

PHENOTYPES

Comparative analyses of the interplay between inter-
specific interactions and species phenotypes can either
be conducted on entire clades, or, commonly, on sister
taxa—species pairs that share a most recent com-
mon ancestor—that are culled from larger phylogenies.
Such analyses generally consist of testing the statist-
ical significance of correlations between either phen-
otypic similarity and geographic overlap (to test for
divergent or convergent character displacement) or

species interactions and phenotypic similarity (to find
predictors of species interactions). As we are looking
for correlations between pairwise comparisons (e.g.,
trait similarity, biogeographical overlap, hybridization,
magnitude of pre-zygotic isolation), rather than “tip
values” belonging to a single species, phylogenetically
independent contrasts and extensions of PGLS analyses
(Felsenstein 1985; Rezende and Diniz-Filho 2012) cannot
be used, and alternative tests have been developed. For
a guide to which analytical tools can be applied to
each empirical question, see Supplementary Diagram 1
available on Dryad.

1. Non-phylogenetic regressions
“Non-phylogenetic regressions” refers to Generalized

Linear Models (GLMs) that ignore phylogenetic struc-
ture. Though less commonly applied to whole-clade
analyses, investigators sometimes use non-phylogenetic
regressions for sister-taxa analyses, on the basis that
branches connecting sister taxa represent independ-
ent evolutionary histories (Felsenstein 1985). Non-
phylogenetic regressions can be used in tests for
character displacement or in analyses of predictors of
interspecific interactions.

2. Mantel tests
Several previous investigators have implemented

Mantel tests (Mantel 1967) to test for character dis-
placement between species pairs (e.g., Roncal et al.
2012). These tests are designed to assess correlations
between matrices, which here comprise interspecific trait
distances or differences. Existing accounts of Mantel
tests describe procedures only for complete matrices,
so they cannot be used in many cases, including sister-
taxa analyses (for which most off-diagonal elements
of distances matrices are by definition excluded) and
in identifying predictors of species interactions (e.g.,
hybridization), as only sympatric lineages can interact
and setting values for allopatric comparisons to zero
would not make biological sense.

3. Phylogenetically permuted partial Mantel tests
Phylogenetically permuted partial Mantel (pppMan-

tel) tests account for phylogenetic non-independence
(e.g., see Lapointe and Garland 2001) by permuting
null data sets that are structured phylogenetically, and
are popular among investigators testing for character
displacement (e.g., Allen et al. 2014; Willis et al. 2014;
Medina-García et al. 2015). Like Mantel tests, pppMantel
tests also require complete interaction matrices.

4. Phylogenetic linear mixed models
In recent years, researchers have adapted animal

models from quantitative genetics to incorporate phylo-
genies as random effects in mixed-effect regressions on
comparative data sets (Hadfield and Nakagawa 2010; de
Villemereuil and Nakagawa 2014). Such PLMMs have
been modified to accommodate pairwise species data
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(Tobias et al. 2014), wherein the identity of the species
being compared and the node connecting them in the
phylogeny are included as random effects. PLMMs are
promising new tools, as they are not limited to sister-
taxa data and model predictions can be generated and
plotted.

5. Phylogenetic simulations
Simulation approaches are widely used to control for

phylogenetic nonindependence in tip data (Martins and
Garland 1991; Garland et al. 1993), and have been applied
to pairwise species comparisons (Elias et al. 2008; Drury
et al. 2015; Losin et al. 2016). In these approaches,
trait evolution is simulated along phylogenies, often
scaled such that the simulated tip data resemble real
data. Pairwise comparisons are then calculated on many
simulated data sets and used to generate a phylo-
genetically informed null distribution of test statistics
against which to compare test statistics calculated from
nonphylogenetic regressions on the real data.

6. Process-based models of phenotypic evolution
In the statistical approaches outlined thus far, the

data analyzed are measurements of pairwise differences
between species, and the statistical tests for the effect of
species interactions on trait evolution consist of testing
for significant correlations between either phenotypic
similarity and geographic overlap or species interactions
and trait similarity. However, it is also possible to detect a
signature of interspecific competition in the distributions
of continuous trait values across the tips of a phylogeny
by fitting process-based models of phenotypic evolution
to the data. These models allow testing hypotheses about
which processes are most likely to have generated the
observed distribution of traits in a clade (Hansen and
Martins 1996; Harmon et al. 2010).

Interspecific interactions have recently been incorpor-
ated into such models in two ways. First, in diversity-
dependent (DD) models, evolutionary rates change as a
function [either linear (DDlin) or exponential (DDexp)]
of the number of extant lineages through time (e.g.,
Weir and Mursleen 2013). Secondly, in the “matching
competition” (MC) model, trait evolution in an evolving
lineage varies as a function of the values of traits in other
evolving lineages (Nuismer and Harmon 2015, Drury
et al. 2016). Comparing the fit of these models to other
models that exclude interspecific interactions (e.g., BM
and OU models) tests whether there is evidence that
interspecific interactions have influenced the trajectory
of trait evolution in a clade.

7. Sister-taxa GLMs
If allopatric speciation is common, then sympatry

occurs after a period of initial isolation, resulting in
a pattern where sympatric sister taxa are older than
allopatric sister taxa. Thus, even random genetic drift
can generate a pattern in which sympatric lineages have
more divergent traits compared to allopatric lineages,

simply because divergence has had more time to evolve
(Weir and Price 2011; Tobias et al. 2014). To control for
variation in the evolutionary distance between sister
taxa in tests for character displacement, “sister-taxa
GLMs” include patristic distance as a predictor in non-
phylogenetic regressions (e.g., Davies et al. 2007; Martin
et al. 2010). Extensions to sister-taxa GLMs include (i)
non-linear transformations of patristic distances (Weber
et al. 2016) and (ii) comparisons of the divergence of
sister taxa relative to a third taxon, with one sister
allopatric to and the other sympatric with that third
taxon (Noor 1997).

8. Sister-taxa model fitting
Recently, tools have been described for fitting process-

based models to sister taxa data sets using maximum
likelihood (Weir and Wheatcroft 2011; Weir and Lawson
2015). With these tools, it is possible to test whether
models that allow evolutionary rates to vary as a linear
function of a gradient (e.g., whether male plumage
coloration varies as a function of the strength of sexual
selection, Seddon et al. 2013) better fit sister-taxa data
sets than constant rates models. When the gradient is
the number of sympatric lineages, these models are
conceptually similar to the linear diversity dependent
models described above.
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